Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 829-834    DOI: 10.11901/1005.3093.2020.147
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition
LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng()
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Cite this article: 

LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng. Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition. Chinese Journal of Materials Research, 2020, 34(11): 829-834.

Download:  HTML  PDF(5828KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano zinc oxide was synthesized by hydrothermal method with sodium alginate as stabilizer, and then the composite film of nano zinc oxide/sodium alginate was prepared by electrodeposition. The particle size and chemical structure of ZnO nanoparticles as well as the morphology of the composite film were characterized. The results show that the composite film had good antibacterial properties against Escherichia coli and Staphylococcus aureus, whilst the film had good photocatalytic degradation effect on methylene blue dye.

Key words:  inorganic non-metallic materials      sodium alginate      nano zinc oxide      electrodeposition      antibacterial      photocatalytic degradation     
Received:  03 May 2020     
ZTFLH:  TQ341.5  
Fund: National Natural Science Foundation of China(51873167)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.147     OR     https://www.cjmr.org/EN/Y2020/V34/I11/829

Fig.1  TEM images of nano ZnO
Fig.2  UV-vis absorption spectrum (a) and the XRD pattern (b) of nano ZnO
Fig.3  Preparation of nano ZnO/sodium alginate composite film
Fig.4  SEM images of nano ZnO/sodium alginate composite films at different magnification (a) 100 μm, (b) 1 μm
Fig.5  Inhibition zones (a) (b) and average diameters of inhibition zones (c) of the control SA sample and the composite film against E. coli and S. aureus
Fig.6  UV-vis absorption spectrum of photocatalytic degradation of methylene blue in composite film (a), and time-degradation rate curve of photocatalytic degradation of methylene blue by composite film (b)
1 Bai X Y, Li L L, Liu H Y, et al. Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo [J]. ACS. Appl. Mater. Inter., 2015, 7(2): 1308
2 Wang Y, Guo X, Pan R, et al. Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity [J]. Mat. Sci. Eng. C., 2015, 53: 222
3 Bi X, Wang H, Ge L, et al. Gold-coated nanostructured carbon tape for rapid electrochemical detection of cadmium in rice with in situ electrodeposition of bismuth in paper-based analytical devices [J]. Sensors. Actuat. B-Chem., 2018, 260: 475
4 Tashkhourian J, Nami-Ana S F, Shamsipu M, et al. Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine [J]. J. Mol. Liq., 2018, 266: 548
5 Shamaeli E, Alizadeh N. Functionalized gold nanoparticle-polypyrrole nanobiocomposite withhigh effective surface area for electrochemical/pH dual stimuli-responsive smart release of insulin [J]. Colloids. Surfaces. B., 2015, 126: 502
6 Beladimousavi S M, Khezri B, Krejcova L, et al. Recoverable bismuth-based microrobots: capture, transport, and on-demand release of heavy metals and an anticancer drug in confined spaces [J]. ACS. Appl. Mater. Inter., 2019, 11(14): 13359
7 Geng Z H, Wang X, Guo X C, et al. Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation [J]. J. Mater. Chem. B., 2016, 4: 3331
8 Xu S, Zhang Y, Gao B D, et al. Preparation and properties of composite films of silk fibroin/carboxymethyl chitosan [J]. Chin. J. Mater. Res., 2017, 31(08): 612
徐水, 张岩, 高保东等. 再生丝素/羧甲基壳聚糖膜的制备和性能 [J]. 材料研究学报, 2017, 31(08): 612
9 Tang A M, Liu Y, Zhao S. Performance of 3D tissue engineering scaffolds of nanocellulose/high cationic polymers composite [J]. Chin. J. Mater. Res., 2015, 29(01): 1
唐爱民, 刘远, 赵姗. 纳米纤维素/阳离子聚合物复合三维组织工程支架的性能 [J]. 材料研究学报, 2015, 29(01): 1
10 Xu W, Wang Z, Liu Y, et al. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-films as epithelia transplanting scaffold for corneal wound healing [J]. Carbohyd. Polym., 2018, 192: 240
11 Yin R, He J, Bai M, et al. Engineering synthetic artificial pancreas using chitosan hydrogels integrated with glucose-responsive microspheres for insulin delivery [J]. Mat. Sci. Eng. C., 2019, 96: 374
12 Sarvaiya J, Agrawal Y K. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery [J]. Int J Biol Macromol., 2015, 72: 454
13 Zhang Z Y, Chen J, Yu J L, et al. Preparation and properties of polydopamine and alginate porous complex scaffolds [J]. Chin. J. Appl. Chem., 2018, 35(06): 665
章朱迎, 陈静, 俞佳蕾等. 多巴胺改性海藻酸多孔支架的制备与性能 [J]. 应用化学, 2018, 35(06): 665
14 Feng J J, Ding H, Yang G, et al. Preparation of black-pearl reduced graphene oxide-sodium alginate hydrogel microspheres for adsorbing organic pollutants [J]. J Colloid Interf Sci, 2017, 508: 387
15 Ma X P, Jing Z H, Feng Q, et al. Synthesis and photocatalytic properties of zinc sulfide microspheres [J]. J. Chin. Ceram. Soc., 2014, 43(1): 121
马晓品, 景志红, 丰奇等. 硫化锌微米球的合成及其光催化性能 [J]. 硅酸盐学报, 2014, 43(1): 121
16 Luo H L, Xiong G Y, Chen X Q, et al. ZnO nanostructures grown on carbon fibers: morphology control and microwave absorption properties [J]. J. Alloy. Compd., 2014, 593: 7
17 Wang H P, Gong X C, Guo X, et al. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads [J]. Int. J. Biol. Macromol., 2019, 121: 1118
18 Wang H P, Gong X C, Miao Y L, et al. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles [J]. Food. Chem., 2019, 283: 397
19 Wang Y F, Zhang Z, Wang M, et al. Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method [J]. Cellulose., 2018, 25(1): 105
20 Liu J L, Wang Y H, Ma J Z, et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO [J]. J. Alloy. Compd., 2019, 783: 898
21 Gao D G, Chen C, Ma J Z. Synthesis and properties of PDMDAAC-AGE-MAA/nano-ZnO composite [J]. Polym. Mater. Sci. Eng., 2014, 30(8): 12
高党鸽, 陈琛, 马建中. PDMDAAC-AGE-MAA/纳米ZnO复合材料的合成及性能 [J]. 高分子材料科学与工程, 2014, 30(8): 12
22 Ibrahim A A, Kumar R, Umar A, et al. Cauliflower-shaped ZnO nanomaterials for electrochemical sensing and potocatalytic applications [J]. Electrochim Acta, 2016, 222: 463
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!