Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 697-704    DOI: 10.11901/1005.3093.2020.020
ARTICLES Current Issue | Archive | Adv Search |
Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet
WANG Guanyi, CHE Xin(), ZHANG Haoyu, CHEN Lijia
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet. Chinese Journal of Materials Research, 2020, 34(9): 697-704.

Download:  HTML  PDF(8429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low-cycle fatigue behavior for two type of specimens, sampling along rolling direction (RD) and transvers direction (TD) respectively of the rolled sheet of Al-5.4Zn-2.6Mg-1.4Cu alloy was comparatively assessed at room temperature. The results show that for all imposed total strain amplitudes the alloy along both RD and TD directions exhibits the stable cyclic stress response behavior. The cyclic stress amplitude of the alloy along TD direction is higher than that along RD direction for the same total strain amplitude, while the fatigue life of the alloy along RD direction is significantly longer than that along TD direction. For the Al-5.4Zn-2.6Mg-1.4Cu alloy sheet, the plastic strain amplitude and elastic strain amplitude are linearly related to the number of reversals to failure. In addition, under the loading condition of low-cycle fatigue the fatigue cracks initiate transgranularly at the free surface of fatigue samples and propagate transgranularly.

Key words:  materials failure and protection      low-cycle fatigue      Al-5.4Zn-2.6Mg-1.4Cu alloy      rolled sheet      fatigue crack initiation and propagation     
Received:  15 January 2020     
ZTFLH:  TG146.2+1  
Fund: Foundation of State Key Laboratory of Rolling and Automation, Northeastern University(2018RALKFKT010)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.020     OR     https://www.cjmr.org/EN/Y2020/V34/I9/697

Fig.1  Schematic diagram for sampling mode in RD and TD direction
Fig.2  Stress-strain curve of Al-5.4Zn-2.6Mg-1.4Cu alloy (a) RD direction; (b) TD direction
Fig.3  Cyclic stress response curves of Al-5.4Zn-2.6Mg-1.4Cu alloy with RD and TD direction at various total strain amplitudes (a) 0.4%; (b) 0.5%; (c) 0.6%; (d) 0.7%; (e) 0.8%
Fig.4  Cyclic stress-strain curves of Al-5.4Zn-2.6Mg-1.4Cu alloy
Sampling directions

K’

/MPa

n’

ε’f

/%

c

σ’f

/MPa

b
RD732.30.072161.7-1.631267.0-0.14
TD733.00.06623.7-1.521104.3-0.13
Table 1  Strain fatigue parameters of Al-5.4Zn-2.6Mg-1.4Cu alloy with RD and TD direction
Fig.5  Total strain amplitude versus fatigue life for Al-5.4Zn-2.6Mg-1.4Cu alloy
Fig.6  Strain amplitudes versus reversals to failure curves for Al-5.4Zn-2.6Mg-1.4Cu alloy (a) RD direction; (b) TD direction
Fig.7  Photographs of fatigue crack initiation and fatigue crack propagation regions of Al-5.4Zn-2.6Mg-1.4Cu alloy (a) fatigue crack initiation region, RD direction; (b) fatigue crack initiation region, TD direction; (c) fatigue crack propagation region, RD direction; (d) fatigue crack propagation region, TD direction
Fig.8  TEM analysis results for fatigue deformation zone of Al-5.4Zn-2.6Mg-1.4Cu alloy with different rolling direction (a) RD direction; (b) TD direction; (c) SAED
Fig.9  EBSD images, PF and IPF of Al-5.4Zn-2.6Mg-1.4Cu alloy (a) RD direction; (b) TD direction; (c) PF; (d) IPF
Sampling directionΔεt /2=0.4%Δεt /2=0.5%Δεt /2=0.6%Δεt /2=0.7%Δεt /2=0.8%
RD282.5376.8417.5435.6449.8
TD305.6393.0435.4454.1467.5
Table 2  Maximum stress range of RD and TD Al-5.4Zn-2.6Mg-1.4Cu alloy
[1] Li C B, Deng Y L, Tang J G, et al. Effect of quenching rate on properties of automotive high strength Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 103
doi: 10.11901/1005.3093.2018.391
(李承波, 邓运来, 唐建国等. 淬火速率对汽车用高强铝合金性能的影响 [J]. 材料研究学报, 2019, 33: 103)
doi: 10.11901/1005.3093.2018.391
[2] Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 15
doi: 10.11901/1005.3093.2017.774
(王宜豹, 黄楠, 刘鲁生等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33: 15)
doi: 10.11901/1005.3093.2017.774
[3] Castella C, Peter I, Lombardo S, et al. Self-hardening aluminum alloys and their potential applications in the automotive industry [J]. Metall. Ital., 2018, 5: 19
[4] An W, Kim D, Kim B H, et al. Effects of exposure temperature on tensile and charpy impact properties of the 7xxx aluminum alloy for aerospace applications [J]. Korean J. Met. Mater., 2019, 57: 214
[5] Xu X J, Jia W J, Huang P, et al. Anisotropy of Al-Zn-Mg-Cu aluminum alloy under different aging conditions [J]. Heat Treat. Met., 2018, 43(4): 57
(许晓静, 贾伟杰, 黄鹏等. 不同时效工艺处理Al-Zn-Mg-Cu铝合金的各向异性 [J]. 金属热处理, 2018, 43(4): 57)
[6] Orozco-Caballero A, Álvarez-Leal M, Verdera D, et al. Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2017, 125: 116
[7] Andreiko I M, Holovatyuk Y V, Ostash O P, et al. Anisotropy of the cyclic crack resistance of aluminum alloys after long-term operation [J]. Mater. Sci., 2016, 52: 83
[8] Jiao H B, Chen S D, Chen S Y, et al. Effect of Mn and Zr on the anisotropy of Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Rev., 2018, 32: 937
(焦慧彬, 陈善达, 陈送义等. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响 [J]. 材料导报, 2018, 32(3): 937)
[9] Chen Y X, Zhang J G, Wang H, et al. EBSD investigation on the anisotropy of 2124 aluminum alloy [J]. Heat Treat. Met., 2011, 36(5): 79
(陈艳霞, 张建国, 王泓等. 2124铝合金各向异性的EBSD研究 [J]. 金属热处理, 2011, 36(5): 79)
[10] Fu Y Z, Jiang Z, Tabie V M, et al. Anisotropy of microstructure and properties of Al-10.22 Zn-2.87 Mg-1.2 Cu-0.213 Zr alloy [J]. Mater. Res. Expr., 2019, 6(10): 106559
[11] Chen J, Duan Y L, Peng X Y, et al. Fatigue performance of 7475-T7351 aluminum alloy plate [J]. Chin. J. Nonferrous Met., 2015, 25: 890
(陈军, 段雨露, 彭小燕等. 7475-T7351铝合金厚板的疲劳性能 [J]. 中国有色金属学报, 2015, 25: 890)
[12] Jian H G, Yin Z M, Jiang F, et al. EBSD analysis of fatigue crack growth of 2124 aluminum alloy for aviation [J]. Rare Met. Mater. Eng., 2014, 43: 1332
[13] Zhang X Y, Leng L, Wang Z J. Low cycle fatigue behavior of Al-Zn-Mg-Cu alloy containing Zr and Sc [J]. Mater. Rev., 2017, 31(20): 63
(张笑宇, 冷利, 王占军. 含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为 [J]. 材料导报, 2017, 31(20): 63)
[14] Chen Y Z, Hao H, Wang L F, et al. Mean stress relaxation during low-cycle fatigue of aluminum alloy 7050-T7451 [J]. J. Mater. Sci. Eng., 2013, 31: 427
(陈胤桢, 郝红, 王利发等. 7050-T7451铝合金低周疲劳平均应力松弛规律 [J]. 材料科学与工程学报, 2013, 31: 427)
[15] Zhu Q Y, Chen L J, Zhu G Q, et al. Effect of Sc addition on low-cycle fatigue properties of extruded Al-Zn-Mg-Cu-Zr alloy [J]. Mater. Sci. Technol., 2019, 36: 118
[16] Zou X L, Yan H, Chen X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2146
[17] Cong F G, Zhao G, Tian N, et al. Inhomogeneity of properties of 7150-T7751 aluminum alloy thick plate [J]. Chin. J. Mater. Res., 2013, 27: 144
(丛福官, 赵刚, 田妮等. 7150-T7751铝合金厚板性能的不均匀性 [J]. 材料研究学报, 2013, 27: 144)
[18] Ma Z F, Zhao W Y, Lu Z. Impact of texture and microstructure on in-plane anisotropy of ultra-high strength aluminium alloy [J]. J. Aeronaut. Mater., 2015, 35(3): 1
(马志锋, 赵唯一, 陆政. 织构及组织结构对超高强铝合金平面力学性能的影响 [J]. 航空材料学报, 2015, 35(3): 1)
[19] Guo H B, Yuan G C, Lin D H, et al. Analysis of mechanical anisotropy in casting-rolling Al-Mn alloy sheet [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 1315
(郭海斌, 袁鸽成, 林典海等. 铸轧Al-Mn合金板材的各向异性分析 [J]. 特种铸造及有色合金, 2015, 35: 1315)
[20] Gao P F, Lei Z N, Li Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Mat. Sci. Eng. A, 2018, 736: 1
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[7] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[8] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[9] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[10] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[11] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[14] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
[15] WANG Yuanchen,SONG Zhuman,LI Rui,SHI Wenbo,ZHU Yankun,ZHANG Guangping. Fatigue Properties and Crack Growth Behavior of ML40Cr Steel for 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(10): 771-775.
No Suggested Reading articles found!