Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 443-451    DOI: 10.11901/1005.3093.2019.489
ARTICLES Current Issue | Archive | Adv Search |
CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water
ZHU Jinyang1(), TAN Chengtong2, BAO Feihu1, XU Lining2
1.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(5802KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of a new developed 3Cr2Al steel in a simulated high-temperature and high-pressure oilfield formation water was studied by means of weight loss method and electrochemical technique, as well as scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) etc. Results show that compared with the plain 3Cr steel, the corrosion rate of 3Cr2Al steel decreases significantly. By short period (about 20 h) test and long period (about 144 h) test, the corrosion rate for 3Cr2Al decreases about 15% and 69%, respectively. The addition of a small amount of Al could improve the CO2 corrosion resistance of the 3Cr2Al steel to certain extent. This is mainly due to the fact that not only the Cr-, but also the Al-enrichment did emerge in the corrosion product on the steel surface, which thereby improves the protectiveness of the corrosion product scale. In the solution with lower Cl- concentration, the Al/Fe atomic ratio in the corrosion product is much higher than the Cr/Fe atomic ratio, namely, the enrichment of Al is more obvious. If the Cl- concentration in the solution increases, the Al/Fe atomic ratio in the corrosion product scale decreased significantly, the enrichment of Al is weakened, correspondingly, the semi-passivation disappeared.

Key words:  materials failure and protection      Cr-containing low alloy steel      CO2 corrosion      elemental enrichment      semi-passivation     
Received:  22 October 2019     
ZTFLH:  TG174.2  
Fund: National Natural Science Foundation of China(51871025)
Corresponding Authors:  ZHU Jinyang     E-mail:  zhujinyang@ustb.edu.cn

Cite this article: 

ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water. Chinese Journal of Materials Research, 2020, 34(6): 443-451.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.489     OR     https://www.cjmr.org/EN/Y2020/V34/I6/443

CCrAlMoSiMnNbFe
0.083.002.000.150.200.550.05Bal.
Table 1  Major elemental compositions of 3Cr2Al steel (%,mass fraction)
CompositionNaClCaCl2KClMgCl·6H2ONaHCO3Na2SO4
Solution A024.88.69.56.21.4
Solution B432.824.88.69.56.21.4
Table 2  Compositions of two oil field formation water simulated solutions (mmol/L)
Fig.1  Microstructure images of 3Cr2Al steel (a) low magnification, (b) high magnification
Fig.2  Macroscopic morphologies of 3Cr2Al steel with (a, b) and without (c, d) corrosion scales formed after corrosion for (a, c) 20 h and (b, d) 144 h
Fig.3  Corrosion rates of 3Cr and 3Cr2Al steels in a CO2-saturated solution
Fig.4  Microscopic morphology and EDS analysis of the corrosion film formed on 3Cr2Al steel
Fig.5  Cross-sectional morphology of 3Cr2Al steel after corrosion
Fig.6  Raman spectra of the corrosion film on 3Cr2Al steel
Fig.7  Elemental mapings on the cross section of the corrosion film formed on 3Cr2Al steel in the solution A
Fig.8  Contents of major elements and enrichments of Al and Cr in the corrosion film on 3Cr2Al steel
Fig.9  Elemental mapings on the cross section of the corrosion film formed on 3Cr2Al steel in the solution B
Fig.10  Comparisons of contents of major elements in the corrosion films formed on 3Cr2Al steel in the solution A and solution B
Fig.11  Potentiodynamic polarization curves of 3Cr2Al steel in the solution A and solution B
[1] Ingham B, Ko M, Kear G, et al. In situ synchrotron X-ray diffraction study of surface scale formation during CO2 corrosion of carbon steel at temperatures up to 90 ℃ [J]. Corros. Sci., 2010, 52: 3052
doi: 10.1016/j.corsci.2010.05.025
[2] Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water [J]. Electrochim. Acta, 2011, 56: 1676
doi: 10.1016/j.electacta.2010.10.059
[3] Sun J B, Su X, Zhang Y. Effect of H2S/CO2 corrosion scales on the hydrogen permeation behavior of low chromium steels [J]. Surf. Technol., 2018, 47(6): 17
(孙建波, 苏鑫, 张勇. 高温高压H2S/CO2腐蚀产物膜对低铬钢氢渗透行为的影响 [J]. 表面技术, 2018, 47(6): 17)
[4] Nice P I, Buene A M, Takabe H, et al. Corrosion problem and its countermeasure of 3Cr110 production tubing in NaCl completion brine on the statfjord field [A]. Corrosion 2006 [C]. Houston: NACE International, 2006
[5] Nice P I, Takabe H, Nice P I. The development and implementation of a new alloyed steel for oil and gas production wells [A]. Corrosion 2000 [C]. Houston: NACE International, 2000
[6] Cheng L, Yu W, Cai Q W. Influence of microbands refined microstructure and two phase microstructure on high temperature fracture behaviors of a low Cr alloy steel [J]. Chin. J. Mater. Res., 2020, 34 (1): 21
(程磊, 余伟, 蔡庆伍. 显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响 [J]. 材料研究学报, 2020, 34 (1): 21)
[7] Ueda M, Takabe H. The formation behavior of corrosion protective films of low Cr bearing steels in CO2 environments [A]. Corrosion 2001 [C]. Houston: NACE International, 2001
[8] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41: 117
doi: 10.1016/S0010-938X(98)00104-8
[9] Chen C F, Liu M X, Zhao G X, et al. The ion passing selectivity of CO2 corrosion scale on N80 tube steel [A].Corrosion 2003 [C]. Houston: NACE International, 2003
[10] Zhu J Y, Xu L N, Lu M X, et al. Essential criterion for evaluating the corrosion resistance of 3Cr steel in CO2 environments: prepassivation [J]. Corros. Sci., 2015, 93: 336
doi: 10.1016/j.corsci.2015.01.030
[11] Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
doi: 10.1016/j.corsci.2016.05.032
[12] Kermani M B, Gonzales J C, Linne C, et al. Development of low carbon Cr-Mo steels with exceptional corrosion resistance for oilfield applications [A]. Corrosion 2001 [C]. Houston: NACE International, 2001
[13] Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment [J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
[14] Ueda M, Takabe H, Nice P I. The development and implementation of a new alloyed steel for oil and gas production wells [A]. Corrosion 2000 [C]. Orlando: NACE International, 2000
[15] Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels [J]. Corros. Sci., 2004, 46: 1669
doi: 10.1016/j.corsci.2003.10.004
[16] Wang R, Luo S J, Liu M, et al. Electrochemical corrosion performance of Cr and Al alloy steels using a J55 carbon steel as base alloy [J]. Corros. Sci., 2014, 85: 270
doi: 10.1016/j.corsci.2014.04.023
[17] Li Y S, Spiegel M, Shimada S. Effect of Al/Si addition on KCl induced corrosion of 9% Cr steel [J]. Mater. Lett., 2004, 58: 3787
doi: 10.1016/j.matlet.2004.06.068
[18] ASTM G1-03 Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. West Conshohocken, PA: ASTM International, 2011
[19] Zhu J Y, Xu L N, Lu M X. Electrochemical impedance spectroscopy study of the corrosion of 3Cr pipeline steel in simulated CO2-saturated oilfield formation waters [J]. Corrosion, 2015, 71: 854
doi: 10.5006/1494
[20] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds [M]. New York: Wiley, 1991
[21] Zhu J Y, Xu L N, Lu M X, et al. Interaction effect between Cr(OH)3 passive layer formation and inhibitor adsorption on 3Cr steel surface [J]. RSC Adv., 2015, 5: 18518
doi: 10.1039/C4RA15519J
[22] Rai D, Moore D A, Hess N J, et al. Chromium (III) hydroxide solubility in the aqueous Na+-OH--H2PO-4-HPO2-4-PO3-4-H2O system: A thermodynamic model [J]. J. Solut. Chem., 2004, 33: 1213
doi: 10.1007/s10953-004-7137-z
[23] Udea M, Ikeda A. Effect of microstructure and Cr content in steel on CO2 corrosion [A]. Corrosion 1996 [C]. Houston: NACE International, 1996
[24] Papassiopi N, Vaxevanidou K, Christou C, et al. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides [J]. J. Hazard. Mater., 2014, 264: 490
doi: 10.1016/j.jhazmat.2013.09.058
[25] Roberson C E, Hem J D. Solubility of aluminum in the presence of hydroxide, fluoride, and sulfate [P]. U S Geol Surv Water-Supply Paper, 1969
[26] Hem J D, Roberson C E. Form and stability of aluminum hydroxide complexes in dilute solution [P]. US Geol. Survey Water Supply Paper. Washington DC: US Government Printing Office, 1967
[27] Sun Z, Zhang D H, Yan B X, et al. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution [J]. Opt. Laser Technol., 2018, 99: 282
doi: 10.1016/j.optlastec.2017.09.013
[28] Da Silva F S, Bedoya J, Dosta S, et al. Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel [J]. Corros. Sci., 2017, 114: 57
doi: 10.1016/j.corsci.2016.10.019
[29] Li S X, Khan H A, Hihara L H, et al. Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment [J]. Corros. Sci., 2018, 132: 300
doi: 10.1016/j.corsci.2018.01.005
[30] Sherif E S M, Almajid A A, Latif F H, et al. Effects of graphite on the corrosion behavior of Aluminum-graphite composite in sodium chloride solutions [J]. Int. J. Electrochem. Sci., 2011, 6: 1085
[1] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[2] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[3] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[4] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[5] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[6] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[7] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[8] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[9] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[10] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
[11] WANG Yuanchen,SONG Zhuman,LI Rui,SHI Wenbo,ZHU Yankun,ZHANG Guangping. Fatigue Properties and Crack Growth Behavior of ML40Cr Steel for 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(10): 771-775.
[12] ZHOU Yin,WANG Shuqi,ZHAO Zhenjiang,XU Sheng,WANG Jian. Stability of MLG/Fe2O3 Nano-particulate Tribo-layer on TC11 Ti-alloy[J]. 材料研究学报, 2019, 33(10): 763-770.
[13] Jin WANG, Qingdan HUANG, Jing LIU, Yaru ZHANG, Chuang QIAO, Long HAO, Junhua DONG, Wei KE. Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area[J]. 材料研究学报, 2018, 32(8): 631-640.
[14] Jin ZHANG, Mengyu CHAI, Jinghai XIANG, Quan DUAN, Lichan LI. Characteristics of Acoustic Emission Signal from Fracture Process of 316LN Stainless Steel[J]. 材料研究学报, 2018, 32(6): 415-422.
[15] Dan ZHANG, Zhenyao WANG, Yongzhang ZHOU, Yuwei LIU, Qi YIN, Gongwang CAO. Initial Corrosion Behavior of Galvanized Steel in Atmosphere by Qinghai Salt Lake[J]. 材料研究学报, 2018, 32(4): 255-262.
No Suggested Reading articles found!