Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (1): 7-16    DOI: 10.11901/1005.3093.2020.154
ARTICLES Current Issue | Archive | Adv Search |
Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance
ZHANG Dalei(), WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Cite this article: 

ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance. Chinese Journal of Materials Research, 2021, 35(1): 7-16.

Download:  HTML  PDF(19613KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A uniform and dense superhydrophobic film on the surface of super ferritic stainless steel B44660 was prepared via spontaneous polymerization of dopamine in the presence of low surface energy substances ODA and PFDT. Then the wettability, surface morphology and chemical structure of the steel with simple- and modified-dopamine coatings were characterized by means of water spray condensation experiment, scanning electron microscope (SEM), X-ray energy spectrum analysis (EDS), impedance spectroscopy and polarization curve tests. The results show that the super ferritic stainless steel with simple dopamine coating is hydrophilic, and however the super ferritic stainless steel surface with super hydrophobic coating has lower corrosion current density and higher coating resistance, the modification treatment can obviously improve the corrosion resistance of the simple dopamine coating on super ferritic stainless steel surface. The super-hydrophobic film formed on the surface of the simple dopamine coating presents large amount of "micro-nano structured air valleys", which prevents the diffusion of strongly corrosive chloride ions between the solution and the solid interface and the electrochemical reaction of the interface. Therefore, the corrosion current density is reduced, correspondingly improving the corrosion resistance of the coating.

Key words:  materials failure and protection      super hydrophobic film      dopamine self-polymerization      super ferritic stainless steel      corrosion behavior     
Received:  08 May 2020     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(51774314);Natural Science Foundation in Shandong Province(ZR2018MEM002);the Fundamental Research Funds for the Central Universities(19CX05001A)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.154     OR     https://www.cjmr.org/EN/Y2021/V35/I1/7

SteelCSiMnCrMoNiSPNTi+Nb
SFSS≤0.03≤1.0≤1.025.0~28.03.0~4.01.0~3.5≤0.04≤0.03≤0.046*(C+N)~1.0
Table 1  Chemical composition of SFSS (mass fraction, %)
SampleSpecificationSource
Dopamine hydrochloride (DA)98%Aladdin Reagent Co., Ltd.
Tris (hydroxymethyl) aminomethane>99.9%Aladdin Reagent Co., Ltd.
Octadecylamine (ODA)90%Aladdin Reagent Co., Ltd.
1H, 1H, 2H, 2H-Perfluorodecyl mercaptan (PFDT)97%Aladdin Reagent Co., Ltd.
NaCl>99.5%Sinopharm Group Chemical Reagent Co., Ltd.
HClPremium gradeSinopharm Group Chemical Reagent Co., Ltd.
Table 2  Main experimental reagents
GroupB1B2B3B4
Average roughness/μm4.27±0.0252.86±0.0130.98±0.0230.23±0.018
Table 3  Average roughness of B44660 sample before modification
Fig.1  Schematic diagram of SFSS/PDA/PFDT and SFSS/PDA/ODA preparation process
Fig.2  Macroscopic appearance of SFSS/PDA/ODA and SFSS/PDA/PFDT surfaces
Fig.3  SEM and EDS analysis of SFSS/PDA/ODA (a, b) and SFSS/PDA/PFDT (c, d)
Fig.4  Average WCA of SFSS/PDA/ODA and SFSS/PDA/PFDT in different roughness of group B1-B4
Fig.5  Before modification of SFSS B44660 (a, b, c) and SFSS/PDA/PFDT (d, e, f) surface water mist condensation state
Fig.6  Microbial attachment diagram under fluorescence microscope (a) Modified front super iron B44660; (b) SFSS/PDA/PFDT
Fig.7  Before modification Super Iron B44660, SFSS/PDA/ODA and SFSS/PDA/PFDT were immer-sed in Polarization curve in 3.5% NaCl aqueous solution
Sampleba /mVbc /mVI0 /A·cm-2E0 /VCorrosion rate/(mm/a)
SFSS326.42-255.757.4701×10-7-0.177730.0087039
SFSS/PDA/ODA380.96-188.111.5006×10-7-0.0315780.0017538
SFSS/PDA/PFDT317.56-66.8189.987×10-8-0.0981340.0007163
Table 4  Before modification Super Iron B44660, SFSS/PDA/ODA and SFSS/PDA/PFDT were immersed in Electrochemical fitting parameters in 3.5% NaCl aqueous solution
Fig.8  Electrochemical impedance spectroscopy of superiron B44660, SFSS/PDA/ODA and SFSS/PDA/PFDT before modification in 3.5% NaCl aqueous solution (a) Nyquist plot; (b), (c) Bode plot
Fig.9  Equivalent circuit diagram: (a) Modified front super iron B44660; (b) SFSS/PDA/PFDT and SFSS/PDA/ODA
SampleRs /Ω·cm2CPE1/F·cm-2Rt /Ω·cm2CPE2/F·cm-2Rp /Ω·cm2
SFSS13.862.267×10-53.779×104
SFSS/PDA/ODA17.361.997×10-510843.739×10-59.265×104
SFSS/PDA/PFDT63.441.092×10-644101.541×10-51.175×105
Table 5  Modified front super iron B44660, SFSS/PDA/ODA and SFSS/PDA/PFDT immersed in 3.5% NaCl aqueous solution
Fig.10  Microtopography of modified front super iron B44660 (a, b); (c, d) SFSS/PDA/PFDT
Fig.11  Schematic diagram of corrosion mechanism (between different SFSS coatings and corrosive media) (a) SFSS; (b) SFSS/PDA/PFDT
1 Tian Y, Li T B. Study on corrosion resistance of super ferritic stainless steel S44660 welded pipe [J]. China's Steel Industry, 2010(12): 29
田野, 李天宝. 超级铁素体不锈钢S44660焊管耐蚀性能的研究 [J]. 中国钢铁业, 2010(12):29
2 Jin C J. Research on corrosion resistance enhancement of AISI430 ferritic stainless steel by laser shock peening [D]. Zhenjiang: Jiangsu University, 2020
金成嘉. 激光冲击强化AISI430铁素体不锈钢抗腐蚀性能研究 [D]. 镇江: 江苏大学, 2020
3 Ma L, Hu S, Shen J, et al. Effects of Cr content on the microstructure and properties of 26Cr-3.5Mo-2Ni and 29Cr-3.5Mo-2Ni super ferritic stainless steels [J]. Journal of Materials Science & Technology, 2016, 32(6): 552
4 Ouyang M H, Liu H A, Ye J X, et al. Study on corrosion electrochemical behavior of super ferrite stainless steel 447 in concentrated sulfuric acid [J]. China Stainless, 2017, 000(001): 28
欧阳明辉, 刘焕安, 叶际宣. 超级铁素体不锈钢447在浓硫酸中的腐蚀电化学行为的研究 [J]. 不锈钢, 2017, 000(001): 28
5 Cao C N. Natural Environmental Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005
曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
6 Schino A D. Corrosion behaviour of AISI 460LI super-ferritic stainless steel [J]. Acta Metallurgica Slovaca, 2019, 25(4): 217
7 Guo X, Xu S, Zhao L, et al. One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties [J]. Langmuir, 2009, 25(17): 9894
8 Song J X. Study on corrosion resistance of super ferrite stainless steel U-tube in sea water [A]. Proceedings of Power Plant Chemistry 2009 Annual Conference and China Power Plant Chemical Network 2009 Summit Forum Conference [C]. Wuhan, 2009
宋敬霞. 超级铁素体不锈钢海优管在海水中的耐腐蚀性研究 [A]. 电厂化学2009学术年会暨中国电厂化网2009高峰论坛会议论文集 [C]. 武汉, 2009
9 Dowling N J E, Kim J N, Kim H J E, et al. Corrosion and toughness of experimental and commercial super ferritic stainless steels [J]. Corrosion Houston Tx, 1999, 55(8): 743
10 Yuan J L, Li H Z, Li T B. Development of S44660 ferritic stainless steel welded pipe for seawater condenser [J]. China Stainless, 2011, 000(004): 31
原军亮, 李怀洲, 李天宝. 海水冷凝器用S44660铁素体不锈钢焊管的发展 [J]. 不锈钢, 2011, 000(004): 31
11 Wang Y F, Shi P. Research on corrosion characteristics of ferritic stainless steel in condensate of exhaust system [J]. Hot Working Technology, 2019, (16): 37
王银凤, 石平. 铁素体不锈钢在排气系统冷凝液中的腐蚀特性研究 [J]. 热加工工艺, 2019, (16): 37
12 Zhang L, Wang W X, Yan Z F, et al. Corrosion performance of 00Cr16Sn ultra-pure ferritic stainless steel welded joints [J]. Transactions of the China Welding Institution., 2015, 036(008): 109
张蕾, 王文先, 闫志峰等. 00Cr16Sn超纯铁素体不锈钢焊接接头腐蚀性能 [J]. 焊接学报, 2015, 036(008): 109
13 Fan Y, Hong C, Huo Y S. Corrosion resistance research on A-TIG welded joint of 444 ultra-pure ferrite stainless steel [J]. Modern Manufacturing Technology and Equipment., 2018, 000(005): 23
范宇, 洪 昌, 霍玉双. 444超纯铁素体不锈钢A-TIG焊接头腐蚀性能的研究 [J]. 现代制造技术与装备, 2018, 000(005): 23
14 Ren J H, Chen A Z, Li Z G, et al. Corrosion resistance evaluation of 439 ultra-pure ferritic stainless steel [J]. China Metallurgy., 2018, 28(3): 35
任娟红, 陈安忠, 李照国等. 439超纯铁素体不锈钢耐蚀性评价 [J]. 中国冶金., 2018, 28(3): 35
15 Schino A D. Corrosion behaviour of AISI 460LI super-ferritic stainless steel [J]. Acta Metallurgica Slovaca, 2019, 25(4): 217
16 Jie H, Xu Q, Wei L, et al. Etching and heating treatment combined approach for superhydrophobic surface on brass substrates and the consequent corrosion resistance [J]. Corrosion Science, 2016, 102(1): 251
17 Zhang B, Zhao X, Li Y, et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach [J]. RSC Advances, 2016, 6(42): 35455
18 Sun X D, Liu G, Li L Y, et al. Preparation and properties of superhydrophobizted sprayed Zn-Al coating [J]. Chin. J. Mater. Res., 2015, 29(7): 523
孙小东, 刘刚, 李龙阳等. 热喷涂锌铝合金超疏水涂层的制备及性能 [J]. 材料研究学报, 2015, 29(7): 523
19 Wang F, Zhou B Y, Feng W, et al. Preparation and condensation behavior of wear resistant Al-based superhydrophobic materials [J]. Chin. J. Mater. Res., 2020, 34(4): 277
王芳, 周宝玉, 冯伟等. 耐磨铝基超疏水材料的制备及其动态冷凝行为 [J]. 材料研究学报, 2020, 34(4): 277
20 Han X X, Yu S R, Li H, et al. Preparation and properties of CuO superhydrophobic coating on X90 pipeline steel [J]. Chin. J. Mater. Res., 2017, (09): 34:40
韩祥祥, 于思荣, 李好等. X90管线钢表面CuO超疏水涂层的制备和性能 [J]. 材料研究学报, 2017, (09): 34:40
21 Liu T. Fabrication of super-hydrophobic surfaces on metallic substrates and research on anti-corrosion and anti-biofilm properties [D]. Qingdao: Ocean University of China, 2009
刘涛. 金属基体超疏水表面的制备及其海洋防腐防污功能的研究 [D]. 青岛: 中国海洋大学, 2009
22 Ji W G, Hu J M, Liu L, et al. Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers [J]. Surface and Coatings Technology, 2007, 201(8): 4789
23 Weng T Y, Lai D L, Li X C, et al. Preparation and property of superhydrophobic phosphate-cerium composite coatings on hot-dip galvanizing carbon steel [J]. Chin. J. Mater. Res., 2018, 032(011): 801
翁天宇, 赖德林, 李晓聪等. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究 [J]. 材料研究学报, 2018, 032(011): 801: 810
24 Yao J P, Lei S, Wang F J, et al. Fabrication and corrosion resistance performance of superhydrophobic cuprous oxide surface [J]. Chin. J. Mater. Res., 2013, 027(006): 647
尧军平, 雷胜, 王法军等. 超疏水氧化亚铜表面的制备和耐腐蚀性能 [J]. 材料研究学报, 2013, 027(006): 647:651
25 Wang J, Chen X, Kang Y, et al. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films [J]. Applied Surface Science, 2010, 257(5): 1473
26 Zhang Z, Chen Y, Gu Q, et al. Preparation and corrosion resistance of 304 super-hydrophobic stainless-steel surface [J]. Iop Conference, 2019, 493
27 Wang Y, Tang Y, Xie C S, et al. The applications of the electrochemical impedance spectroscopy in the materials researches [J]. Materials Review, 2011, (13): 9
王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用 [J]. 材料导报, 2011, (13): 9
28 Zyilmaz A T, Erbil M, Yazici B. Investigation of corrosion behaviour of stainless steel coated with polyaniline via electrochemical impedance spectroscopy [J]. Progress in Organic Coatings, 2004, 51(1): 47
29 Haoxiang M A, Hua L, Enshuang Z, et al. Preparation of bonded super-hydrophobic thin film [J]. Chemical Journal of Chinese Universities, 2019, 40(3): 560
30 Gao J Z, Zhao J L, Guo H, et al. Fabrication of superhydrophobic surface through a solution-immersion process on zinc substrate [J]. Journal of Northwest Normal University (Natural Science), 2012, 048(003): 65
高锦章, 赵菊玲, 郭昊等. 溶液浸泡法制备超疏水锌表面 [J]. 西北师范大学学报: 自然科学版, 2012, 048(003): 65
[1] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[2] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[11] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[12] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[15] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
No Suggested Reading articles found!