Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 713-720    DOI: 10.11901/1005.3093.2018.711
ARTICLES Current Issue | Archive | Adv Search |
Influence of High Temperature Water Vapor on Characteristics of CO2 Electrochemical Sensor
WANG Guangwei1,2(),CHEN Hongzhen2,LI Youfeng1,XIE Bo1,JIANG Zhongyuan1
1. Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China
2. Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology (CIGIT), Chinese Academy of Sciences, Chongqing 400714, China
Cite this article: 

WANG Guangwei,CHEN Hongzhen,LI Youfeng,XIE Bo,JIANG Zhongyuan. Influence of High Temperature Water Vapor on Characteristics of CO2 Electrochemical Sensor. Chinese Journal of Materials Research, 2019, 33(9): 713-720.

Download:  HTML  PDF(4622KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon dioxide electrochemical sensor was prepared with Li and Ba co-doped oxycarbonate as auxiliary sensing electrode and YSZ as electrolyte, then the influence of high temperature water vapor on the performance of the sensor was investigated. The results show that the potentiometric sensor respond correctly and rapidly to the change of CO2 concentration (271~576802 μL/L) after pretreatment in water vapor (300℃) for 24~120 h. The number of transfer electrons of the electrode reactions were approximately 2. Low oxygen dependency was found for the sensors, whether they were pretreated or not in water vapor for 120 h, all responded rapidly and accordingly for different oxygen content. The sensor worked not only in water vapor for relatively long term, but also after the constantly water vapor treatment to some extent.

Key words:  inorganic non-metallic materials      dope      oxycarbonate      water vapor      YSZ      CO2 sensor     
Received:  16 December 2018     
ZTFLH:  TQ174.7  
Fund: National Natural Science Foundation of China(41763008);Natural Science Foundation of the Science & Technology Department of Guizhou Province(2019-1461);Science and Technology Foundation of the Science & Technology Department of Guizhou Province(2018-2774);Natural Science Research Project of Education Department of Guizhou Province(2017-086);Doctor Foundation of Zunyi Normal College(BS2017-02);Frontier and Application Foundation Research Program of Chongqing(cstc2015jcyjA20008)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.711     OR     https://www.cjmr.org/EN/Y2019/V33/I9/713

Fig.1  Schematic draw of CO2 sensor
SensorTemperature/℃Time/h
Entry 13000
Entry 230024
Entry 330048
Entry 430072
Entry 530096
Entry 6300120
Table 1  Pretreatment of sensors by elevated temperature water vapor
Fig.2  XRD diffraction patterns of the sensing electrode (A: Entry1; B: Entry6)
Fig.3  SEM images of sensing electrode surfaces (a) Entry 1 without Au paste; (b) Entry 6 without Au paste; (c) Entry 1 with Au paste; (d) Entry 6 with Au paste
Fig.4  Response of sensor with the continuous change (576802→271→576802 μL/L) of CO2 concentration (a) Entry1; (b) Entry2; (c) Entry3; (d) Entry4; (e) Entry5; (f) Entry6
Fig.5  Response of sensor with the continuous change (271→576802→271 μL/L) of CO2 concentration (a) Entry 1; (b) Entry 2; (c) Entry 3; (d) Entry 4; (e) Entry 5; (f) Entry 6
Entry 1Entry 2Entry 3Entry 4Entry 5Entry 6
CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2
n2.032.012.061.982.021.942.021.982.052.082.071.95
E/mV70.6871.3869.6572.4671.0373.9671.1372.2669.9968.9869.3173.58
Table 2  Transfer electrons (n) and potentials per lgc(CO2) (△E) with continuous change (576802→271→576802 μL/L) of CO2 concentration
Entry 1Entry 2Entry 3Entry 4Entry 5Entry 6
CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2CO2
n2.052.022.041.982.061.992.031.962.082.002.061.97
E/mV69.9871.0570.3372.4869.7072.1070.6673.2168.9571.7269.6872.82
Table 3  Transfer electrons (n) and potentials per lgc(CO2) (△E) with continuous change (271→576802→271 μL/L) of CO2 concentration
Fig.6  Stability of sensors (a: Entry 1 with air; b: Entry 1 with 2% oxygen; c: Entry 1 with 0.2% oxygen; d: Entry 6 with air; e: Entry 6 with 2% oxygen; f: Entry 6 with 0.2% oxygen)
Fig.7  Response of sensor with the existence of 10% water vapor
Fig.8  Long term stability of sensor with the existence of 10% water vapor
1 MiuraN, YanY T, NonakaS, et al. Sensing properties and mechanism of a planar carbon dioxide sensor using magnesia-stabilized zirconia and lithium carbonate auxiliary phase [J]. J. Mater. Chem., 1995, 5: 1391
2 FergusJ W. A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors [J]. Sensor. Actuat., 2008, 134B: 1034
3 SchwandtC, KumarR V, HillsM P. Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide [J]. Sensor. Actuat., 2018, 265B: 27
4 OkamotoT, ShimamotoY, TsumuraN, et al. Drift phenomena of electrochemical CO2 sensor with Pt, Na2CO3/Na+-electrolyte//YSZ/Pt structure [J]. Sensor. Actuat., 2005, 108B: 346
5 BeldaC, FritschM, FellerC, et al. Stability of solid electrolyte based thick-film CO2 sensors [J]. Microelectron. Reliab., 2009, 49: 614
6 N?feH, AldingerF. CO2 sensor based on a solid state oxygen concentration cell [J]. Sensor. Actuat., 2000, 69B: 46
7 MorioM, HyodoT, ShimizuY, et al. Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors [J]. Sensor. Actuat., 2009, 139B: 563
8 SadaokaY. Nasicon based CO2 gas sensor with an auxiliary electrode composed of LiCO3-metal oxide mixtures [J]. Sensor. Actuat., 2007, 121B: 194
9 LeeI, AkbarS A. Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode [J]. Ionics, 2014, 20: 563
10 ImanakaN, KamikawaM, TamuraS, et al. Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes [J]. Sensor. Actuat., 2001, 77B: 301
11 ImanakaN, KamikawaM, TamuraS, et al. Carbon dioxide gas sensing with the combination of trivalent Sc3+ ion conducting Sc2(WO4)3 and O2- ion conducting stabilized zirconia solid electrolytes [J]. Solid State Ionics, 2000, 133: 279
12 PasierbP, KomornickiS, GajerskiR, et al. The performance and long-time stability of potentiometric CO2 gas sensors based on the (Li-Ba)CO3/NASICON/(Na-Ti-O) electrochemical cells [J]. Solid State Ionics, 2003, 157: 357
13 LeeJ S, LeeJ H, HongS H. Nasicon-based amperometric CO2 sensor using Na2CO3-BaCO3 auxiliary phase [J]. Sensor. Actuat., 2003, 96B: 663
14 YamauchiM, ItagakiY, AonoH, et al. Reactivity and stability of rare earth oxide-Li2CO3 mixtures [J]. J. Eur. Ceram. Soc., 2008, 28: 27
15 ImanakaN, OguraA, KamikawaM, et al. CO2 gas sensor with the combination of tetravalent zirconium cation and divalent oxide anion conducting solids with water-insoluble oxycarbonate electrode [J]. Electrochem. Commun., 2001, 3: 451
16 ImanakaN, KamikawaM, AdachiG Y. A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode [J]. Anal. Chem., 2002, 74: 4800
17 DingK, SeyfriedW E Jr. Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400℃ and 40 megapascals [J]. Science, 1996, 272: 1634
18 DingK, SeyfriedW E Jr, TiveyM K, et al. In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge [J]. Earth Planet. Sci. Lett., 2001, 186: 417
19 DingK, SeyfriedW E. In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures [J]. Chem. Rev., 2007, 107: 601
20 SakaiN, YamajiK, HoritaT, et al. Effect of water on electrochemical oxygen reduction at the interface between fluorite-type oxide-ion conductors and various types of electrodes [J]. Solid State Ionics, 2004, 174: 103
21 MénilF, DaddahB O, TardyP, et al. Planar LISICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties [J]. Sensor. Actuat., 2005, 107B: 695
22 LeeI, AkbarS A, DuttaP K. High temperature potentiometric carbon dioxide sensor with minimal interference to humidity [J]. Sensor. Actuat., 2009, 142B: 337
23 TamuraS, HasegawaI, ImanakaN, et al. Carbon dioxide gas sensor based on trivalent cation and divalent oxide anion conducting solids with rare earth oxycarbonate based auxiliary electrode [J]. Sensor. Actuat., 2005, 108B: 359
24 AonoH, ItagakiY, SadaokaY. Na3Zr2Si2PO12-based CO2 gas sensor with heat-treated mixture of Li2CO3 and Nd2O3 as an auxiliary electrode [J]. Sensor. Actuat., 2007, 126B: 406
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!