Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 659-665    DOI: 10.11901/1005.3093.2019.068
ARTICLES Current Issue | Archive | Adv Search |
Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete
SHANG Baihui1,3,MA Yuantai1,MENG Meijiang1,LI Ying1,2()
1. Corrosion and Protection Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3. School of Material Science and Technology, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete. Chinese Journal of Materials Research, 2019, 33(9): 659-665.

Download:  HTML  PDF(1680KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The standard curing time of concrete is 28 days in order to guarantee the strength of the concrete. It is well known that a stable passive film can be formed on the surface of steel rebar in the alkaline pore fluid during the concrete curing stage, long before the steel rebar will be influenced by chloride ingress or concrete carbonation in the future. However, there is no consensus on the time conditions for the pre-passivation of the steel bars in the open literature. In this study, the growth process and characteristic evolution of the passive film formed on HRB400 steel rebar in a Ca(OH)2 saturated solution, which aims to simulate the medium in concrete pores during curing period, were studied by a series of electrochemical tests (open-circle potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve (PDC)) and XPS. Results show that it will take 5 days to form a stable passive film on the surface of HRB400 steel rebar, and the passive film has a two-layered structure. In the initial stage of passivation, on the HRB400 steel surface a thin film mainly composed of Fe(II) products firstly formed, then on top of which, a film mainly composed of Fe(III) products would further form.

Key words:  materials failure and protection      HRB400 steel rebar      passive film      electrochemical tests      immersion time     
Received:  18 January 2019     
ZTFLH:  TG174.1  
Fund: National Basic Research Program of China(2015CB655105);National Natural Science Foundation of China(51671198)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.068     OR     https://www.cjmr.org/EN/Y2019/V33/I9/659

ElementsCSiMnPSVFe
Content0.17~0.250.4~0.801.2~1.6≤0.045≤0.0450.03~0.06Bal.
Table 1  Chemical composition of HRB400 steel rebar (%, mass fraction)
Fig.1  OCP results of HRB400 steel after immersion in saturated Ca(OH)2 solution for different time
Fig.2  Nyquist (a) and Bode (b) plots of HRB400 steel immersed in saturated Ca(OH)2 solution for different time
Fig.3  Equivalent electrical circuit model used for fitting EIS data
Fig.4  Relationship between Rp and immersion time, obtained by fitting EIS data
Fig.5  PDC of HRB400 steel immersed in saturated Ca(OH)2 solution (pH=12.5) for different time
Fig.6  Fine XPS of Fe 2p3/2 in the passive film of HRB400 steel under different sputtering time and fitting curves
Fig.7  Relative contents of four kinds of iron products in the passive film of HRB400 steel under different sputtering time
Fig.8  Schematic diagrams of the passive film of HRB400 steel in simulated concrete pore solution (a) at initial passivation stage; (b) at final passivation stage
1 GeY, ZhuX Y, LiY. Corrosion Control of Reinforced in Concrete Structures-Application of Zinc and Zinc Alloys [M]. Beijing: Science Press, 2015
1 葛 燕, 朱锡昶, 李 岩. 混凝土结构钢筋腐蚀控制-锌与锌合金的应用 [M]. 北京: 科学出版社, 2015
2 HouB R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
2 侯宝荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
3 KeW. Investigation Report on Corrosion in China [M]. Beijing: Chemical Industry Press, 2003
3 柯 伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003
4 PoursaeeA, HanssonC M. Reinforcing steel passivation in mortar and pore solution [J]. Cem. Concr. Res., 2007, 37: 1127
5 WangY S, ZuoY, ZhaoX H, et al. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution [J]. Appl. Surf. Sci., 2016, 379: 98
6 LiuG J, ZhangY S, NiZ W, et al. Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution [J]. Constr. Build. Mater., 2016, 115: 1
7 CaoF T, WeiJ, DongJ H, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution [J]. Corros. Sci., 2015, 100: 365
8 CaoF T, WeiJ, DongJ H, et al. Corrosion behavior of 20SiMn steel rebar in carbonate/bicarbonate solutions with the same pH value [J]. Acta Metall. Sin., 2016, 50: 674
8 曹凤婷, 魏 洁, 董俊华等. 20SiMn钢在恒定pH值的碳酸盐溶液中的腐蚀行为 [J]. 金属学报, 2016, 50: 674
9 LiuM, ChengX Q, LiX G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution [J]. Constr. Build. Mater., 2015, 93: 884
10 ShiJ J, SunW, GengG Q. Influence of simulated concrete pore solution on reinforcing steel passivation [J]. J. Build. Mater., 2011, 14: 452
10 施锦杰, 孙 伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响 [J]. 建筑材料学报, 2011, 14: 452
11 VolpiE, OliettiA, StefanoniM, et al. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment [J]. J. Electroanal. Chem., 2015, 736: 38
12 SánchezM, GregoriJ, AlonsoC, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores [J]. Electrochim. Acta, 2007, 52: 7634
13 GhodsP, IsgorO B, McRaeG, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement [J]. Cem. Concr. Comp., 2009, 31: 2
14 SongD, MaA B, SunW, et al. Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing [J]. Corros. Sci., 2014, 82: 437
15 LiuR, JiangL H, XuJ X, et al. Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions [J]. Constr. Build. Mater., 2014, 56: 16
16 WilliamsonJ, IsgorO B. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar [J]. Corros. Sci., 2016, 106: 82
17 GhodsP, IsgorO B, BensebaaF, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J]. Corros. Sci., 2012, 58: 159
18 Guangzhou Sihang Engineering Machinery Research Institute. JTJ 275-2000 Corrosion prevention technical specifications for concrete structures of marine harbour engineering [S]
18 广州四航工程机术研究院. JTJ 275-2000海港工程混凝土结构防腐蚀技术规范 [S])
19 LiuX M, ShiZ M, LinH C, et al. A study on corrosion behavior of reinforced rebar in simulated pore solution by Electrochemical Impedance Spectroscopy (EIS) [J]. J. Chin. Soc. Corros. Prot., 1997, 17(1): 19
19 刘晓敏, 史志明, 林海潮等. 钢筋在混凝土模拟液中腐蚀行为的EIS特征 [J]. 中国腐蚀与防护学报, 1997, 17(1): 19)
20 ShiJ J, SunW, GengG Q. Influence of carbonation on the corrosion performance of steel HRB 335 in simulated concrete pore solution [J]. Acta Metall. Sin., 2011, 47: 17
20 施锦杰, 孙 伟, 耿国庆. 碳化对模拟混凝土孔溶液中HRB335钢筋腐蚀行为的影响 [J]. 金属学报, 2011, 47: 17
21 ZhengH B, LiW H, MaF B, et al. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions [J]. Cem. Concr. Res., 2014, 55: 102
22 LvS B, ZhangW. Problems existing in promoting high strength steel bar use in China and countermeasures [J]. Res. Appl. Build. Mater., 2013, (6): 46
22 吕书斌, 张 薇. 我国推广应用高强钢筋存在的问题及对策建议 [J]. 建材技术与应用, 2013, (6): 46)
23 MorrisonS R, Translated by WuH H. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. Beijing: Science Press, 1988
23 莫里森 S R著, 吴辉煌译. 半导体与金属氧化膜的电化学 [M]. 北京: 科学出版社, 1988
24 CaoC N. Principles of Electrochemistry of Corrosion. 2nd ed. [M]. Beijing: Chemical Industry Press, 2004
24 曹楚南. 腐蚀电化学原理 .第2版 [M]. 北京: 化学工业出版社, 2004
25 HuetB, L'HostisV, MiserqueF, et al. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution [J]. Electrochim. Acta, 2005, 51: 172
26 GhodsP, IsgorO B, BrownJ R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties [J]. Appl. Surf. Sci., 2011, 257: 4669
27 GunayH B, GhodsP, IsgorO B, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS [J]. Appl. Surf. Sci., 2013, 274: 195
28 XuW, DaubK, ZhangX, et al. Oxide formation and conversion on carbon steel in mildly basic solutions [J]. Electrochim. Acta, 2009, 54: 5727
29 Sánchez-MorenoM, TakenoutiH, García-Jare?oJ J, et al. A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media [J]. Electrochim. Acta, 2009, 54: 7222
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[14] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
[15] WANG Yuanchen,SONG Zhuman,LI Rui,SHI Wenbo,ZHU Yankun,ZHANG Guangping. Fatigue Properties and Crack Growth Behavior of ML40Cr Steel for 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(10): 771-775.
No Suggested Reading articles found!