Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 381-391    DOI: 10.11901/1005.3093.2021.134
ARTICLES Current Issue | Archive | Adv Search |
Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques
YANG Liuyang1, TAN Zhuowei2, LI Tongyue3, ZHANG Dalei1(), XING Shaohua4(), JU Hong1
1.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2.College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
3.Offshore Oil Engineering (Qingdao) Co. Ltd., Pipe Manufacturing and Shipment Operation Department, Qingdao 266580, China
4.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques. Chinese Journal of Materials Research, 2022, 36(5): 381-391.

Download:  HTML  PDF(8806KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The existence of defects in oil and gas pipelines will cause rapid changes in local area fluids where the defects located, which during oil and gas transportation may lead to pipeline corrosion failure. For understanding the nature of this phenomenon, the corrosion behavior of defects in CO2 saturated NACE solution was studied via wire beam electrodes (WBE)- and electrochemical impedance spectroscope (EIS)-techniques, meanwhile, the relevant corrosion mechanism of defects located in different regions in the flow field was analyzed by means of the hydrodynamics modules of the so called "COMSOL Multiphysics". The results show that the variation of flow field on defects in different locations may lead to different appearance of corrosion there. The areas nearby the upper and lower edges of the defect may be subjected to large turbulent kinetic energy and wall shear stress, which may naturally act as anode, hence are suffered from serious corrosion. On the other hand, the bottom area of the defect and the area far away from the defect may act as cathode due to small turbulent kinetic energy and large boundary layer thickness, thus the corrosion progresses slowly there. With the extension of the flow corrosion time, the corrosion of the upper and lower edges of the defect becomes more serious, as a whole, defects have a tendency to expand and deepen vertically.

Key words:  materials failure and protection      defects      WBE      electrochemical      CO2 corrosion      mass transfer      wall shear stress     
Received:  06 February 2021     
ZTFLH:  TG172.6+3  
Fund: National Natural Science Foundation of China(51774314);Natural Science Foundation of Shandong Province(ZR2018MEM002);Fundamental Research Funds for the Central Universities(19CX05001A);Key R&D Projects of Shandong Province(2019GHY112065)
About author:  XING Shaohua, Tel: 13953205717, E-mail: xingsh@sunrui.net
ZHANG Dalei, Tel: 18053235179, E-mail: zhangdal2008@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.134     OR     https://www.cjmr.org/EN/Y2022/V36/I5/381

Fig.1  Schematic diagram of wire electrode slot
Fig.2  The real picture of the wire beam electrode array.
Fig.3  Schematic diagram of a single-channel circulating flow accelerated corrosion test loop
Fig.4  Two-dimensional meshing model of defect area
Fig.5  Distribution of galvanic current contours during the microelectrode array test
Fig.6  Distribution of average galvanic currents during WBE testing.
Fig.7  Nyquist and Bode plots of EIS of the different zones of the sample after 12 h erosion corrosion
Fig.8  Equivalent circuit models used for EIS fitting. (a) lower 1; (b) upper 1, upper 2, defect, lower 2
PositionRs/Ω·cm2Y0(Qf)/Ω-1 cm-2s nRf/Ω·cm2Y0(Qct)/Ω-1 cm-2s nRct/Ω·cm2
Upper 16.670×10-16.475×10-43.3095.762×10-314.41
Upper 25.281×10-14.645×10-33.0036.359×10-310.08
Defects6.973×10-15.264×10-33.6823.169×10-315.27
Lower 15.608×10-1--2.344×10-25.092
Lower 26.523×10-19.729×10-43.1336.353×10-314.58
Table 1  Fitting resistance parameters of the different zones of the defective sample
Fig.9  Corrosion morphologies of the electrode wires in the middle row.
Fig.10  (a) 3D morphology of the pit defect after removing corrosion product film, (b) depth changes after removing the corrosion products on the pit defect
Fig.11  Zoning diagram of the sample with defect
Fig.12  The flow velocity and turbulent energy distribution changes in the defect and its surrounding area
Fig.13  The change curve of wall shear stress in the defect and its surrounding area.
Fig.14  The change curve of turbulent dissipation rate in the defect area.
1 Ding R, Yao B H, Fang X B. Analysis of corrosion factors and discussion of protection countermeasures of long-distance buried oil and gas pipeline [J]. Appl. Chem. Ind., 2019, 48: 2972
丁 锐, 姚宝慧, 方孝斌. 长输地埋油气管道腐蚀因素分析与防护对策探讨 [J]. 应用化工, 2019, 48: 2972
2 Tan Z W, Yang L Y, Zhang D L, et al. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49: 186
doi: 10.1016/j.jmst.2019.10.023
3 Gong W W, Yang B K, Chen Y, et al. In situ SECM observation of corrosion behavior of carbon steel at defects of epoxy coating under AC current conditions [J]. Chin. J. Mater. Res., 2020, 34: 545
公维炜, 杨丙坤, 陈 云 等. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为 [J]. 材料研究学报, 2020, 34: 545
doi: 10.11901/1005.3093.2019.571
4 Olvera-Martínez M E, Mendoza-Flores J, Genesca J. CO2 corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors [J]. J. Loss Prev. Process Ind., 2015, 35: 19
doi: 10.1016/j.jlp.2015.03.006
5 Cui Y. Research of residual strength evaluation methods of the high-strength steel gas pipeline with internal corrosion defects [D]. Beijing: Beijing Jiaotong University, 2015
崔 钺. 含内腐蚀缺陷高强钢输气管道剩余强度的评估方法研究 [D]. 北京: 北京交通大学, 2015
6 Fatah M C, Ismail M C. Empirical equation of CO2 corrosion with presence of low concentrations of acetic acid under turbulent flow conditions [J]. Corros. Eng., Sci. Technol., 2011, 46: 49
8 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines – A review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
9 Zhu M, Du C W, Li X G, et al. Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2014, 87: 224
doi: 10.1016/j.corsci.2014.06.028
10 Wang Z B, Zheng Y G, Yi J Z. The role of surface film on the critical flow velocity for erosion-corrosion of pure titanium [J]. Tribol. Int., 2019, 133: 67
doi: 10.1016/j.triboint.2019.01.006
11 Tan Z W, Zhang D L, Yang L Y, et al. Development mechanism of local corrosion pit in X80 pipeline steel under flow conditions [J]. Tribol. Int., 2020, 146: 106145
doi: 10.1016/j.triboint.2019.106145
12 Yamagata T, Ito A, Sato Y, et al. Experimental and numerical studies on mass transfer characteristics behind an orifice in a circular pipe for application to pipe-wall thinning [J]. Exp. Therm. Fluid Sci., 2014, 52: 239
doi: 10.1016/j.expthermflusci.2013.09.017
13 Sun J L, Cheng Y F. Modeling of mechano-electrochemical interaction between circumferentially aligned corrosion defects on pipeline under axial tensile stresses [J]. J. Pet. Sci. Eng., 2021, 198: 108160
doi: 10.1016/j.petrol.2020.108160
14 Wang R H, Shenoi R A, Sobey A. Ultimate strength assessment of plated steel structures with random pitting corrosion damage [J]. J. Constr. Steel Res., 2018, 143: 331
doi: 10.1016/j.jcsr.2018.01.014
15 Wang Y H, Wang W, Liu Y Y, et al. Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode [J]. Corros. Sci., 2011, 53: 2963
doi: 10.1016/j.corsci.2011.05.051
16 Zhang D L, Wang W, Li Y. Wire beam electrode technique for investigating galvanic corrosion behavior of hot-dip galvanized steel-scratch defect [J]. Chin. J. Mater. Res., 2009, 23: 343
张大磊, 王 伟, 李 焰. 热镀锌钢材的电偶腐蚀行为-划痕型缺陷 [J]. 材料研究学报, 2009, 23: 343
17 Stoulil J, Kaňok J, Kouřil M, et al. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment [J]. J. Nucl. Mater., 2013, 443: 20
doi: 10.1016/j.jnucmat.2013.06.031
18 Pang L, Wang Z B, Zheng Y G, et al. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54: 95
doi: 10.1016/j.jmst.2020.03.041
19 Farelas F, Galicia M, Brown B, et al. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS [J]. Corros. Sci., 2010, 52: 509
doi: 10.1016/j.corsci.2009.10.007
20 Yong X Y, Zhang Y Q, Li D L, et al. Effect of near-wall hydrodynamic parameters on flow induced corrosion [J]. Corros. Sci. Prot. Technol., 2011, 23: 245
雍兴跃, 张雅琴, 李栋梁 等. 近壁处流体力学参数对流动腐蚀的影响 [J]. 腐蚀科学与防护技术, 2011, 23: 245
21 Tan Z W, Yang L Y, Wang Z B, et al. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field [J]. CIESC J., 2021, 72: 2203
谭卓伟, 杨留洋, 王振波 等. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究 [J]. 化工学报, 2021, 72: 2203
22 Owen J, Godfrey J, Ma W L, et al. An experimental and numerical investigation of CO2 corrosion in a rapid expansion pipe geometry [J]. Corros. Sci., 2020, 165: 108362
doi: 10.1016/j.corsci.2019.108362
23 Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution [J]. Chin. J. Mater. Res., 2011, 25: 39
贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为 [J]. 材料研究学报, 2011, 25: 39
24 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
25 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification [J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
26 Okafor P C, Nesic S. Effect of acetic acid on CO2 corrosion of carbon steel in vapor-water two-phase horizontal flow [J]. Chem. Eng. Commun., 2007, 194: 141
doi: 10.1080/00986440600642975
27 Kahyarian A, Nesic S. H2S corrosion of mild steel: a quantitative analysis of the mechanism of the cathodic reaction [J]. Electrochim. Acta, 2019, 297: 676
doi: 10.1016/j.electacta.2018.12.029
28 Ochoa N, Vega C, Pébère N, et al. CO2 corrosion resistance of carbon steel in relation with microstructure changes [J]. Mater. Chem. Phys., 2015, 156: 198
doi: 10.1016/j.matchemphys.2015.02.047
29 Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines [J]. Energy Fuels, 2012, 26: 4098
doi: 10.1021/ef3002795
30 Olvera-Martínez M E, Mendoza-Flores J, Rodríguez-Gómez F J, et al. Assessment of the effects of acetic acid and turbulent flow conditions on the corrosion of API 5L X52 steel in aqueous CO2 solutions [J]. Mater. Corros., 2018, 69: 376
31 Tang Y F, Qiao Z L, Cao Y, et al. Numerical analysis of separation performance of an axial-flow cyclone for supercritical CO2-water separation in CO2 plume geothermal systems [J]. Sep. Purif. Technol., 2020, 248: 116999
doi: 10.1016/j.seppur.2020.116999
32 Cai F, Liu W, Fan X H, et al. Electrochemical corrosion behavior of X70 pipeline steel in turbulence zone under jet impingement at high temperature and high pressure CO2 environment [J]. J. Phys. Chem., 2013, 29: 1003
蔡 峰, 柳 伟, 樊学华 等. 高温高压喷射湍流区中X70管线钢CO2腐蚀电化学特征 [J]. 物理化学学报, 2013, 29: 1003
[1] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[4] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[5] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[6] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[8] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating[J]. 材料研究学报, 2021, 35(8): 561-571.
[10] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[11] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[12] ZHANG Shaohua, LI Yanrui, WEI Yinghui, LIU Baosheng, HOU Lifeng, DU Huayun, LIU Xiaoda. Synergistic Effect of Multi-media on Carbon Steel Corrosion[J]. 材料研究学报, 2021, 35(10): 721-731.
[13] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[14] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[15] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
No Suggested Reading articles found!