Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (8): 629-634    DOI: 10.11901/1005.3093.2019.073
ARTICLES Current Issue | Archive | Adv Search |
Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts
Zhuman SONG1,Rui LI2,Miao QIAN2,Wenbo SHI3,Ke QIAN2,Heng MA2,Qingyin CHEN2,Guangping ZHANG1()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Zhejiang Huadian Equipment Testing Institute Co. Ltd. , Hangzhou 310015, China
3. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts. Chinese Journal of Materials Research, 2019, 33(8): 629-634.

Download:  HTML  PDF(7436KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ratio (σs/σb) of ultimate tensile strength to yield strength for the 8.8-grade bolt were firstly obtained by tensile tests, and then its fatigue properties under the pre-applied stresses of 10%, 30% and 50% of the ultimate tensile strength were investigated, respectively. The results show that the fatigue limit of 8.8-grade bolt decreases from 370 MPa to 263 MPa with increasing the pre-applied stress from 10% to 50% of the ultimate tensile strength. In addition, the effective stress at fatigue limit was obtained as 562.75 MPa by handling the effect of pre-applied stress on the fatigue S-N curves of the 8.8-grade bolt with the effective stress parameter method. It means that the fatigue failure of 8.8-grade bolt will not happen when the effective stress is lower than 562.75 MPa. Finally, the maximum pre-applied stresses and pre-load torque curves corresponding to the 8.8-grade M6 and M27 bolts at different stress ratios were given.

Key words:  materials failure and protection      fatigue strength      effective stress      8.8-grade bolts      prestress     
Received:  21 January 2019     
ZTFLH:  TM752  
Fund: Supported by Zhejiang Science and Technology Project(No. 5211HD180005)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.073     OR     https://www.cjmr.org/EN/Y2019/V33/I8/629

Fig.1  Dimensions of tensile and fatigue specimens of 8.8-grade bolt (unit: mm)
ElementsCSiMnSPCrMoCuNiFe
Content0.400.240.580.0070.0090.89<0.030.03<0.3Bal.
Table 1  Chemical composition of 8.8-grade bolt (mass fraction, %)
Fig.2  Optical image of microstructure of 8.8-grade bolt
Fig.3  Engineering stress-strain curve of 8.8-grade bolt
Fig.4  S-N curves of 8.8-grade bolt under different applied prestresses
Fig.5  SEM images of fatigue damaged 8.8-grade bolt subjected to different applied prestresses (a) and (b) fatigue crack initiation zone, (c) and (d) fatigue crack growth zone;(a) and (c) σ0=84 MPa, Δσ/2=400 MPa,(b) and (d) σ0=420 MPa, Δσ/2=300 MPa
Fig.6  Curves of relationship between effective stress and fatigue life
Fig.7  Relationships between σ0107/σb-R and pretightening torque-R
[1] Ma G, Han Y, Chen X, et al. Failure analysis of 6.8 grade bolt for transmission towers [J]. Heat Treat. Met., 2011, 36(2): 105
[1] 马 光, 韩 钰, 陈 新等. 输电铁塔用6.8级螺栓断裂失效分析 [J]. 金属热处理, 2011, 36(2): 105)
[2] Tan Q H, Dong T Z, Wu H Y, et al. Research on utilization of high-strength bolt in the transmission towers [J]. Elect. Power, 2012, 45(5): 39
[2] 谭青海, 董铁柱, 吴海洋等. 高强度螺栓在输电铁塔上的应用 [J]. 中国电力, 2012, 45(5): 39)
[3] Jiang A H, Chen L, Shi H Q, et al. Fracture analysis of screw bolt [J]. Hot Work. Technol., 2013, 42(2): 222
[3] 姜爱华, 陈 亮, 师红旗等. 螺栓疲劳断裂失效分析 [J]. 热加工工艺, 2013, 42(2): 222)
[4] Wen A L, Lu W J, Wang S W. Fracture analysis on bolt of 35CrMo steel [J]. Phys. Test. Chem. Anal. (Part A: Phys. Test.), 2014, 50: 674
[4] 温爱玲, 路文娟, 王生武. 35CrMo螺栓断裂分析 [J]. 理化检验(物理分册), 2014, 50): 674)
[5] Meng W H, Zeng W C, Gu J Q, et al. Failure analysis on early fatigue fracture of a 10.9 grade bolt [J]. Phys. Test. Chem. Anal. (Part A: Phys. Test.), 2017, 53: 365
[5] 孟文华, 曾伟传, 顾静青等. 10.9级螺栓早期疲劳断裂失效分析 [J]. 理化检验(物理分册), 2017, 53: 365
[6] Zhao Q, Cao J L, Ding J H, et al. Analysis on fracture of 35CrMo steel bolts [J]. Shanghai Met., 2017, 39(6): 71
[6] 赵 强, 曹佳丽, 丁景焕等. 35CrMo钢螺栓断裂原因分析 [J]. 上海金属, 2017, 39(6): 71)
[7] Peng Z F, Liu Z J. A proposal on the choice and quality control of bolts in lattice tower construction [J]. Guangdong Power Transm. Technol., 2009, 11(3): 32
[7] 彭正峰, 刘足健. 浅谈送电线路铁塔螺栓 [J]. 广东输电与变电技术, 2009, 11(3): 32)
[8] Jin Y, Sun X F. Study on stress relaxation of bolt metals at elevated temperatures [J]. J. Southwest Jiaotong Univ., 1998, 33(1): 48
[8] 金 尧, 孙训方. 螺栓材料的应力松弛特性研究 [J]. 西南交通大学学报, 1998, 33(1): 48)
[9] Shi Y J, Shi G, Wang Y Q, et al. Long-time monitoring on strain relaxation of high strength bolts in end-plate connections [J]. Constr. Technol., 2004, 33(11): 11
[9] 石永久, 施 刚, 王元清等. 高强度螺栓应变松弛的长时间试验监测 [J]. 施工技术, 2004, 33(11): 11)
[10] Guo J Q, Xuan F Z, He L. Stress relaxation performance and prediction models for bolt material of 1Cr10NiMoW2VNbN [J]. Nuclear Power Eng., 2008, 29(6): 119
[10] 郭进全, 轩福贞, 何 磊. 螺栓材料1Cr10NiMoW2VNbN的应力松弛行为及预测模型 [J]. 核动力工程, 2008, 29(6): 119)
[11] Dong J. Study on stress relaxation performance prediction for steam turbine bolts [J]. J. North China Elect. Power Univ., 2013, 40(1): 84
[11] 董 瑾. 汽轮机螺栓应力松弛行为预测的研究 [J]. 华北电力大学学报, 2013, 40(1): 84)
[12] Wang W, Xu H, Ma Y, et al. Self-loosening mechanism of bolted joints under vibration [J]. J. Vibrat. Shock, 2014, 33(22): 198
[12] 王 崴, 徐 浩, 马 跃等. 振动工况下螺栓连接自松弛机理研究 [J]. 振动与冲击, 2014, 33(22): 198)
[13] Chang X Y. Research on loose characteristics of bolted joint used on transmission tower under the action of wind [D]. Beijing: North China Electric Power University, 2015
[13] 常星亚. 风载作用下输电铁塔螺栓连接松动特性研究 [D]. 北京: 华北电力大学, 2015
[14] Wang N, Zhang B. Simulation analysis of the stress relaxation of assembly bolt at room temperature [J]. J. Taiyuan Univ., 2016, 34(4): 6
[14] 王 娜, 张 博. 预紧螺栓常温应力松弛仿真分析 [J]. 太原学院学报, 2016, 34(4): 6)
[15] Fu Y L. Research on mechanical properties of transmission tower bolted connection [D]. Beijing: North China Electric Power University, 2016
[15] 付焱磊. 输电铁塔用螺栓连接的力学性能研究 [D]. 北京: 华北电力大学, 2016
[16] Zhu R Y, Li H M. Preload and fatigue life of high strength bolt [J]. J. Hubei Polytech. Univ., 2004, 19(3): 135
[16] 朱若燕, 李厚民. 高强度螺栓的预紧力及疲劳寿命 [J]. 湖北工学院学报, 2004, 19(3): 135)
[17] Marcelo A L, Uehara A Y, Utiyama R M, et al. Fatigue properties of high strength bolts [J]. Proced. Eng., 2011, 10: 1297
[18] Liu Y, Li X D, Dong P X. Application of screw preloading force in all-electric injection molding machine [J]. Guangdong Sci. Technol., 2015, 24(12): 22
[18] 刘 洋, 李向东, 董鹏举. 浅析螺钉预紧力应用在全电动注塑机中的应用 [J]. 广东科技, 2015, 24(12): 22)
[19] Kong F X, Yan T, Zhou H B. Influence of the pretightening stress on the fatigue life of a bolt used for wind turbine blades [J]. Chin. J. Turbomach., 2017, 59(6): 49
[19] 孔繁晓, 言 婷, 周海波. 预紧力对风电叶片根部螺栓疲劳寿命的影响分析 [J]. 风机技术, 2017, 59(6): 49)
[20] Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[A].Rosenfeld M. Effects of Environment and Complex Load History on Fatigue Life [M]. West Conshohocken, PA: ASTM International, 1970
[21] S Write Suresh, Wang Z G Translated. Fatigue of Materials [M]. Beijing: Defense Industry Press, 1999
[21] 舒尔茨著, 王中光译. 材料的疲劳 [M]. 第2版. 北京: 国防工业出版社, 1999
[1] DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. 材料研究学报, 2023, 37(1): 55-64.
[2] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[11] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[12] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!