Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 183-190    DOI: 10.11901/1005.3093.2019.430
ARTICLES Current Issue | Archive | Adv Search |
Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy
WANG Zhihu1,ZHANG Jumei2,BAI Lijing1,ZHANG Guojun1()
1. School of Materials Science and Engineering, Xi'an University of Technology, Xi’an 710048, China
2. School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi’an 710054, China
Cite this article: 

WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy. Chinese Journal of Materials Research, 2020, 34(3): 183-190.

Download:  HTML  PDF(3515KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The micro-arc oxidization (MAO) ceramic layer on AZ31 Mg-alloy was post-treated by hydrothermal treatment at 125℃ for 18 h with two solutions of different compositions. The effect of hydrothermal solutions on the microstructure and corrosion resistance of MAO ceramic layer was studied, and the relevant formation- and corrosion-mechanism of the film generated via hydrothermal treatment were discussed. The results show that MgO on the MAO ceramic layer was partially dissolved during hydrothermal treatment, and the released Mg2+ was combined with OH- in alkaline hydrothermal solution to form Mg(OH)2 nanosheets, which deposited on the surface of ceramic layer and pores; whereas Al3+ and Co2+ in the other solution might replace some Mg2+ in Mg(OH)2 to form layered double hydroxides (LDH) nanoplates, which could seal the micro-poles and cracks on the MAO ceramic layer. Wettability and electrochemical test results show that the sealing effect of hydrophilic Mg(OH)2 coating on MAO ceramic layer can improve the corrosion resistance of MAO ceramic layer to some extent. However, hydrophobic LDH coating can significantly improve the corrosion resistance of MAO ceramic coating due to the sealing effect and the ion exchange ability of LDH.

Key words:  materials failure and protection      magnesium alloy      micro-arc oxidization      hydrothermal treatment      coating     
Received:  03 September 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51701162);Key Laboratory Project of Shaanxi Education Department(17JS083)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.430     OR     https://www.cjmr.org/EN/Y2020/V34/I3/183

Fig.1  Cross-section and 3D surface morphologies of the three coatings. (a) and (d) MAO, (b) and (e) HT-1/MAO, (c) and (f) HT-2/MAO
Fig.2  XRD patterns of different samples
Fig.3  General and enlarged views of the surfaces of three coatings, (a) and (d) MAO, (b) and (e) HT-1/MAO, (c) and (f) HT-2/MAO
Fig.4  EDS analysis results of the marked regions of three coatings in Fig.3 (d, e, f) (a) MAO, (b) HT-1/MAO, (c) HT-2/MAO
Fig.5  Static contact angles of three coatings (a) MAO, (b) HT-1/MAO, (c) HT-2/MAO
Fig.6  Polarization curves of AZ31 substrate and three coatings
SamplesEcorr, SCE/VIcorr/A·cm-2Rp/Ω·cm2
AZ31-1.4903.44×10-51.46×103
MAO-1.3645.78×10-82.11×106
HT-1/MAO-1.3781.35×10-86.26×106
HT-2/MAO-1.2203.17×10-91.97×107
Table1  Polarization parameters of AZ31 and three coatings
Fig.7  Nyquist (a) and Bode (b) plots of the three coa-tings
[1] Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
[2] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review [J]. J. Alloys Compd., 2002, 336: 88
[3] Li Y H, Zhang B B, Dong X G, et al. Comparative study on corrosion resistance of micro arc oxidation ceramic coatings on Mg-Mn-RE alloy [J]. Chin. J. Mater. Res., 2016, 30: 235
[3] 李玉海, 张白冰, 董旭光等. Mg-Mn-RE微弧氧化陶瓷膜层耐蚀性对比研究 [J]. 材料研究学报, 2016, 30: 235
[4] Mori Y, Koshi A, Liao J S, et al. Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate-silicate mixture electrolytes [J]. Corros. Sci., 2014, 88: 254
[5] Dong H R, Ma Y, Guo H X, et al. Characteristics of microstructure and corrosion resistance of micro arc coatings on magnesium alloy fabricated with different power loading processes [J]. Rare Met. Mat. Eng., 2017, 46: 1656
[5] 董海荣, 马颖, 郭惠霞等. 不同加压方式下镁合金微弧氧化膜结构及耐蚀性的变化规律 [J]. 稀有金属材料与工程, 2017, 46: 1656
[6] Ezhilselvi V, Nithin J, Balaraju J N, et al. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy [J]. Surf. Coat. Technol., 2016, 288: 221
[7] Zhao J M, Xie X, Zhang C. Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy [J]. Corros. Sci., 2017, 114: 146
[8] Zou B, Lv G H, Zhang G L, et al. Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy [J]. Trans. Nonferr. Metal. Soc. China, 2015, 25: 1500
[9] Zhu Y Y, Zhang S F, Zhao R F, et al. Influences of Na2SiO3 and EDTA-ZnNa2 concentration on properties of zinc-containing coatings on WE43 magnesium alloys [J]. Surf. Coat. Technol., 2018, 356: 108
[10] Jiang D, Zhou H, Wan S, et al. Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly [J]. Surf. Coat. Technol., 2018, 339: 155
[11] Lu X P, Blawert C, Huang Y D, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles [J]. Electrochim. Acta, 2016, 187: 20
[12] Qiu Z Z, Sun J, Wang R, et al. Magnet-induced fabrication of a superhydrophobic surface on ZK60 magnesium alloy [J]. Surf. Coat. Technol., 2016, 286: 246
[13] Phuong N V, Fazal B R, Moon S. Cerium- and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy [J]. Surf. Coat. Technol., 2017, 309: 86
[14] Zhang G, Wu L, Tang A T, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31 [J]. Corros. Sci., 2018, 139: 370
[15] Yao Z P, Xia Q X, Chang L M, et al. Structure and properties of compound coatings on Mg alloys by micro-arc oxidation/hydrothermal treatment [J]. J. Alloys?Compd., 2015, 633: 435
[16] Li C Y, Fan X L, Zeng R C, et al. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31-Influence of EDTA [J]. J. Mater. Sci. Technol., 2019, 35: 1088
[17] Cui L Y, Gao S D, Li P P, et al. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31 [J]. Corros. Sci., 2017, 118: 84
[18] Li J M, Zhang Q W, Cai H, et al. Controlled deposition, electrical and electrochemical properties of electroless nickel layers on microarc oxidized magnesium substrates [J]. Mater. Lett., 2013, 93: 263
[19] Wang Z H, Zhang J M, Bai L J, et al. Microstructure and property of composite coatings on AZ91 Mg-alloy prepared by micro-arc oxidation and electroless Cu-layer [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 391
[19] 王志虎, 张菊梅, 白力静等. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能 [J]. 中国腐蚀与防护学报, 2018, 38: 391
[20] Cui X J, Ping J, Zhang Y J, et al. Structure and properties of newly designed MAO/TiN coating on AZ31B Mg alloy [J]. Surf. Coat. Technol., 2017, 328: 319
[21] Wang Z H, Bai L J, Wang A L, et al. Microstructure and properties of duplex coating on AZ91 magnesium alloy combined with MAO and magnetic sputtering copper [J]. Rare Met. Mater. Eng., 2018, 47: 2561
[21] 王志虎, 白力静, 王爱玲等. AZ91镁合金表面微弧氧化与磁控溅射镀铜复合处理层的微观组织与性能 [J]. 稀有金属材料与工程, 2018, 47: 2561
[22] Chen N N, Wang Y H, Zhong L, et al. Anticorrosion performance of super-hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy [J]. Chin. J. Mater. Res., 2017, 31: 751
[22] 陈宁宁, 王燕华, 钟莲等. 石墨烯/硬脂酸超疏水复合膜层的防腐性能 [J]. 材料研究学报, 2017, 31: 751
[23] Zhou M, Pang X L, Wei L, et al. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties [J]. Appl. Surf. Sci., 2015, 337: 172
[24] Chen J F, Lin W X, Liang S Y, et al. Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy [J]. Appl. Surf. Sci., 2019, 463: 535
[25] Peng F, Wang D H, Tian Y X, et al. Sealing the pores of PEO coating with Mg-Al layered double hydroxide: enhanced corrosion resistance, cytocompatibility and drug delivery ability [J]. Sci. Rep., 2017, 7: 8167
[26] Cui L Y, Liu H P, Zhang W L, et al. Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy [J]. J. Mater. Sci. Technol., 2017, 33: 1263
[27] Jin Q, Tian G Y, Li J X, et al. The study on corrosion resistance of superhydrophobic magnesium hydroxide coating on AZ31B magnesium alloy [J]. Colloids Surf. A, 2019, 577: 8
[28] Duan H P, Du K Q, Yan C W, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D [J]. Electrochim. Acta, 2006, 51: 2898
[29] Cui L Y, Zeng R C, Guan S K, et al. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: the influence of porosity [J]. J. Alloys Compd., 2017, 695: 2464
[30] Feng J, Chen Y, Liu X H, et al. In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties [J]. Mater. Chem. Phys., 2013, 143: 322
[31] Wu L, Yang D N, Zhang G, et al. Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31 [J]. Appl. Surf. Sci., 2018, 431: 177
[32] Tang Y, Wu F, Fang L, et al. A comparative study and optimization of corrosion resistance of ZnAl layered double hydroxides films intercalated with different anions on AZ31 Mg alloys [J]. Surf. Coat. Technol., 2019, 358: 594
[33] Bordbar-Khiabani A, Yarmand B, Mozafari M. Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte [J]. Surf. Coat. Technol., 2019, 360: 153
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[3] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[4] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[5] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[6] TIAN Zhigang, LI Xinmei, QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong. Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating[J]. 材料研究学报, 2023, 37(3): 219-227.
[7] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
[8] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[9] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[10] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[11] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[12] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[13] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[14] LI Ruiy, XIE Min, ZHANG Yonghe, PEI Xun, LIU Yang, SONG Xiwen. Physical Properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 Ceramic Materials[J]. 材料研究学报, 2022, 36(1): 49-54.
[15] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
No Suggested Reading articles found!