Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (1): 10-20    DOI: 10.11901/1005.3093.2021.586
ARTICLES Current Issue | Archive | Adv Search |
Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance
XIE Feng1, GUO Jianfeng1, WANG Haitao2, CHANG Na1()
1.School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
2.School of Environmental Science and Technology, Tianjin 300387, China
Cite this article: 

XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance. Chinese Journal of Materials Research, 2023, 37(1): 10-20.

Download:  HTML  PDF(16627KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Firstly, hexagonal crystalline CdS multilayer flower-like microspheres were synthesized by hydrothermal reaction, next on the surface of which ZnO nanorods were grown on to form uniform ZnO/CdS composite, and thirdly ZnO/CdS/Ag ternary semiconductor photocatalyst was prepared by depositing Ag nanoparticles onto ZnO nanorods by photoreduction method. The prepared ZnO/CdS/Ag photocatalyst was characterized by scanning electron microscope and transmission electron microscope, while its photoelectric property, active group capture characteristics, photocatalytic degradability for methylene blue (MB) and antibacterial property were also examined. The results show that ZnO nanorods uniformly grow on the surface of CdS microspheres, and Ag nanoparticles were deposited on the surface of ZnO nanorods. ZnO/CdS/Ag ternary photocatalyst has good visible light response, low impedance and high photocurrent density. ZnO/CdS/Ag composite photocatalyst can simultaneously produce hydroxyl and superoxide radicals and other reactive oxygen groups. The degradation rate of methylene blue (MB) on ZnO/CdS/Ag ternary photocatalyst in 30 min is higher than 90%. The sterilization rate of 0.25 mg/mL ZnO/CdS/Ag to Gram-negative bacteria (Escherichia coli) is higher than 96%, and gram-positive bacteria (Staphylococcus aureus) can be completely destroyed.

Key words:  inorganic non-metallic materials      photocatalysis      zinc oxide      nanorod      antibacterial property     
Received:  13 October 2021     
ZTFLH:  X703.1  
Fund: National Key R & D Program of China(2019YFC0408400)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.586     OR     https://www.cjmr.org/EN/Y2023/V37/I1/10

Fig.1  Schematic diagram for the preparation of ZnO/CdS/Ag
Fig.2  XRD patterns of CdS, ZnO and ZnO/CdS/Ag
Fig.3  The XPS spectra of ZnO/CdS/Ag
Fig.4  SEM images of CdS (a), ZnO (b), ZnO/CdS (c) and ZnO/CdS/Ag (d)
Fig.5  TEM images of ZnO/CdS (a), ZnO/CdS/Ag (b)
Fig.6  Elemental distribution of ZnO/CdS/Ag: total element diagram (a), Zn (b), O (c), Cd (d), S (e), Ag (f) and EDS elemental composition diagram of ZnO/CdS/Ag catalyst (g)
Fig.7  The UV-Vis absorption spectra (a), photoluminescence spectra (b), electrochemical impedance diagram (c) and transient photocurrent response diagram (d) of ZnO, CdS, ZnO/CdS, ZnO/CdS/Ag
Fig.8  The photocatalytic degradation curves (a) and kinetic fitting curves (b) of ZnO, CdS, ZnO/CdS, ZnO/CdS/Ag of methylene blue; comparison of the photocatalytic efficiency between ZnO/CdS/Ag photocatalyst and photocatalysts reported in other references in the comparison chart (c); trapping experiment of the photocatalytic reactive species based on ZnO/CdS/Ag photocatalyst (d)
Fig.9  Antibacterial activity of 0.25 mg/mL ZnO/CdS/Ag against escherichia coli (blank a1, dark conditions a2, light conditions a3) and staphylococcus aureus (blank b1, dark conditions b2, light conditions b3)
Fig.10  Antibacterial activity of 0.5 mg/mL ZnO/CdS/Ag against escherichia coli (dark conditions a1, light conditions a2) and staphylococcus aureus (dark conditions b1, light conditions b2)
Fig.11  Mott-Schottky curves (a) and the photocatalytic reaction mechanism diagram (b)
1 Lin Y, Hu H Y, Hu Y H. Role of ZnO morphology in its reduction and photocatalysis [J]. Appl. Surf. Sci., 2020, 502: 144202
doi: 10.1016/j.apsusc.2019.144202
2 Tian S Q, Liu Q F, Sun J N, et al. Mesoporous ZnO nanorods array with a controllable area density for enhanced photocatalytic properties [J]. J. Colloid Interface Sci., 2019, 534: 389
doi: 10.1016/j.jcis.2018.09.049
3 Raha S, Ahmaruzzaman M. Facile fabrication of g-C3N4 supported Fe3O4 nanoparticles/ZnO nanorods: A superlative visible light responsive architecture for express degradation of pantoprazole [J]. Chem. Eng. J., 2020, 387: 123766
doi: 10.1016/j.cej.2019.123766
4 Li J Y, Dai B S, Qi Y J, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals [J]. J. Alloy Compd., 2021, 877: 9
5 Khan M I, Naeem M, Mustafa G M, et al. Synthesis and characterization of Co and Ga co-doped ZnO thin films as an electrode for dye sensitized solar cells [J]. Ceram. Int., 2020, 46: 26590
doi: 10.1016/j.ceramint.2020.07.127
6 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 728
doi: 10.11901/1005.3093.2019.146
谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 728
7 Fang X M, Zeng Z, Gao S, et al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chin. J. Mater. Res., 2018, 32: 945
方向明, 曾 值, 高世勇 等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32: 945
8 Yuvaraj S, Fernandez A C, Sundararajan M, et al. Hydrothermal synthesis of ZnO-CdS nanocomposites: Structural, optical and electrical behavior [J]. Ceram. Int., 2020, 46:391
doi: 10.1016/j.ceramint.2019.08.274
9 Senasu T, Chankhanittha T, Hemavibool K, et al. Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic [J]. Mater. Sci. Semicond Process, 2021, 123: 105558
doi: 10.1016/j.mssp.2020.105558
10 Liu Y, Dong R, Ma Y, et al. Improved photocatalytic hydrogen evolution by facet engineering of core-shell structural CdS@ZnO [J]. Int. J. Hydrogen Energy, 2019, 44: 25599
doi: 10.1016/j.ijhydene.2019.08.008
11 Bai L, Li S J, Ding Z J, et al. Wet chemical synthesis of CdS/ZnO nanoparticle/nanorod hetero-structure for enhanced visible light disposal of Cr(VI) and methylene blue [J]. Colloid Surface A, 2020, 607: 125489
doi: 10.1016/j.colsurfa.2020.125489
12 Ha L P P, Vinh T H T, Thuy N T B, et al. Visible-light-driven photocatalysis of anisotropic silver nanoparticles decorated on ZnO nanorods: Synthesis and characterizations [J]. J. Environ. Chem. Eng., 2021, 9: 105103
doi: 10.1016/j.jece.2021.105103
13 Zhang Y, Liu L, Van Der Bruggen B, et al. A free-standing 3D nano-composite photo-electrode-Ag/ZnO nanorods arrays on Ni foam effectively degrade berberine [J]. Chem. Eng. J., 2019, 373: 179
doi: 10.1016/j.cej.2019.05.026
14 Rajkumar P, Sarma B K. Ag/ZnO heterostructure fabricated on AZO platform for SERS based sensitive detection of biomimetic hydroxyapatite [J]. Appl. Surf. Sci., 2020, 509: 144798
doi: 10.1016/j.apsusc.2019.144798
15 Singhal S, Dixit S, Shukla A K. Self-assembly of the Ag deposited ZnO/carbon nanospheres: A resourceful photocatalyst for efficient photocatalytic degradation of methylene blue dye in water [J]. Adv. Powder Technol., 2018, 29: 3483
doi: 10.1016/j.apt.2018.09.031
16 Yin L X, Zhang H F, Huang J F, et al. Enhanced visible-light photocatalytic activity of Ag/In2S3 photocatalysts induced by Schottky contact and SPR of Ag [J]. J. Mater. Sci. Mater. Electron, 2020, 31: 2089
doi: 10.1007/s10854-019-02730-x
17 Kumar V, Singh N, Jana S, et al. Surface polar charge induced Ni loaded CdS heterostructure nanorod for efficient photo-catalytic hydrogen evolution [J]. Int. J. Hydrogen Energy, 2021, 46: 16373
doi: 10.1016/j.ijhydene.2020.06.176
18 Zhu X L, Liang X Z, Wang P, et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: Insight into the role of Ag particles [J]. Appl. Surf. Sci., 2018, 456: 493
doi: 10.1016/j.apsusc.2018.06.127
19 Gu W, Yang X, Teng F, et al. Enhanced photo activity by hole concentration on CdS surface [J]. Chem. Phys. Lett, 2020, 759: 137945
doi: 10.1016/j.cplett.2020.137945
20 Xiong S, Xi B, Qian Y. CdS Hierarchical Nanostructures with Tunable Morphologies: Preparation and Photocatalytic Properties [J]. J. Phys. Chem. C, 2010, 114: 14029
doi: 10.1021/jp1049588
21 Liu Y T, Zhang Q P, Xu M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation [J]. Appl. Surf. Sci, 2019, 476: 632
doi: 10.1016/j.apsusc.2019.01.137
22 Peng Z, Li Y, Wang W, et al. Facile synthesis of magnetic Fe@Al-ZnO nanocomposite for photocatalytic bacterial inactivation under visible-light irradiation [J]. Mater. Sci. Semicond Process, 2021, 123: 105560
doi: 10.1016/j.mssp.2020.105560
23 Gajendiran J, Vijayakumar V, Senthil V P, et al. Ionic liquid assisted wet chemical synthesis CdS quantum dots and their structural, morphological, optical, electrochemical, photocatalytic, antibacterial and hemocompatibility characterization [J]. Optik, 2020, 213: 164638
doi: 10.1016/j.ijleo.2020.164638
24 Xie Z, Feng Y, Wang F, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline [J]. Appl. Catal. B Environ., 2018, 229: 96
doi: 10.1016/j.apcatb.2018.02.011
25 Gao Y, Li S, Li Y, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate [J]. Appl. Catal. B Environ., 2017, 202: 165
doi: 10.1016/j.apcatb.2016.09.005
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] HU Qing, WU Chunfang, ZHANG Kaifeng, PAN Hao, LI Kun. Preparation of Small Gold Nanorods[J]. 材料研究学报, 2022, 36(7): 519-526.
[15] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
No Suggested Reading articles found!