Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 699-704    DOI: 10.11901/1005.3093.2019.192
ARTICLES Current Issue | Archive | Adv Search |
Pyrolysis Kinetics of Glass Fiber/Epoxy Foam Sandwich Panel
CHEN Songhua1,2,XU Yanying1,2(),WANG Zhi1,2,WANG Jing3
1. School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China
2. Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University, Shenyang 110136, China
3. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

CHEN Songhua,XU Yanying,WANG Zhi,WANG Jing. Pyrolysis Kinetics of Glass Fiber/Epoxy Foam Sandwich Panel. Chinese Journal of Materials Research, 2019, 33(9): 699-704.

Download:  HTML  PDF(1772KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal decomposition characteristics of glass fiber/epoxy foam sandwich panels was studied via DTG-60(AH) thermogravimetric analyzer by different heating rates and in three atmospheres with different oxygen contents. The results show that the pyrolysis reaction of glass fiber/epoxy foam sandwich panels in air can be differentiated into three stages. As the heating rate increases, the initial reaction temperature, the termination reaction temperature and the maximum mass loss rate temperature of the pyrolysis reaction shifted to the high temperature. The decrease of oxygen content in atmospheres has a greater impact on the third stage of thermal decomposition. The pyrolysis kinetics were analyzed by the Flynn-Wall-Ozawa method and the Starink method to obtain the apparent activation energy.

Key words:  composites      glass fiber/epoxy foam sandwich panels      pyrolysis characteristics      pyrolysis kinetics      apparent activation energy     
Received:  10 April 2019     
ZTFLH:  V258  
Fund: National Natural Science Foundation of China Youth Fund Project(51403129);Liaoning Natural Science Foundation(2018550705);Liaoning Provincial Department of Education Science and Technology Project(JYT19065)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.192     OR     https://www.cjmr.org/EN/Y2019/V33/I9/699

Fig.1  TG and DTG curves of experimental samples (a) TG curves, (b) DTG curves
SampleSandwich panelSurface materialFoam core
Temperature range/℃First stage246~334249~344244~296
Second stage334~472344~484455~664
Third stage472~663484~633-
Initial decomposition temperature/℃246249244
Final temperature/℃663633664
The temperature of maximum weight loss rate/℃First stage269308270
Second stage369382551
Third stage546539-
Table 1  Temperature parameters of each stage of pyrolysis of experimental samples
Fig.2  TG and DTG curves at different heating rates (a) TG curves, (b) DTG curves

Heating rate

/℃·min-1

510203040
Temperature range/℃First stage227~304235~317246~334250~344260~359
Second stage304~404317~445334~472344~486359~506
Third stage404~545445~620472~663486~689506~701
Initial decomposition temperature/℃227235246250260
Final temperature/℃545620663689701

The temperature of maximum weight loss rate

/℃

First stage244256269279287
Second stage321346369393397
Third stage506532546558566
Table 2  Pyrolysis temperature parameters at different heating rates
Fig.3  TG and DTG curves at different oxygen levels (a) TG curves, (b) DTG curves
Fig.4  Relationship curve lgβ-1/T during pyrolysis
Conversion α%FWO methodStarink method
Slope KfEf/kJ·mol-1Slope KsEs/kJ·mol-1
10-5.68103.47-12.16100.76
20-5.3196.62-11.3594
30-5.97108.6-12.6104.36
40-7.59138.16-16.34135.32
50-11.65212.09-25.62212.19
60-10.33187.98-22.46186.06
70-7.23131.68-15.26126.42
80-6.98127.08-14.63121.21
90-6.68121.68-13.91115.23
-136.37-132.84
Table 3  Calculation of apparent activation energy of samples by FWO method and Starink method
Fig.5  Relationship curvelnβT1.8-1/T during pyrolysis
1 ChenL H, FuJ B, WangQ, et al. Application of composite sandwich structure on aviation [J]. Trainer, 2014, (2): 44
1 陈龙辉, 付杰斌, 王 强等. 复合材料夹层结构在航空领域的应用 [J]. 教练机, 2014, (2): 44)
2 DouR L, HuP. Application of composite foam sandwich structure in civil aircraft [J]. Civil Aircraft Design & Research, 2004(3):42-45
2 窦润龙, 胡 培. 复合材料泡沫夹层结构在民机中的应用 [J]. 民用飞机设计与研究, 2004, (3): 42)
3 CMH-17 Coordinating committee, Wang H, Shen Z. Composite Handbook: Composite Sandwich Structure [M]. Shanghai: Jiaotong University Press, 2016
3 CMH-17协调委员会, 汪海, 沈真. 复合材料手册:复合材料夹层结构 [M]. 上海: 交通大学出版社, 2016)
4 MamalisA G, ManolakosD E, IoannidisM B, et al. On the crushing response of composite sandwich panels subjected to edgewise compression: experimental [J]. Composite Structures, 2005, 71(2):246
5 ZhangZ S, LiangS. Fabrication process and inter layer bonding properties of embedded medium temperature co-cured composite damping structure [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1972
5 张忠胜, 梁 森. 嵌入式中温共固化复合材料阻尼结构制作工艺及层间结合性能 [J]. 航空学报, 2013, 34(8): 1972)
6 RizovV, ShipshaA, ZenkertD. Indentation study of foam core sandwich composite panels [J]. Composite Structures, 2005, 69(1): 95
7 AidelK J. Repeated impact response of sandwich composites [J]. Journal of Engineering and Sustainable Development, 2017, 21(4): 71
8 ZouG P, ZhangB, ChangZ L. Experiment and numerical simulation on foam sandwich plate pull-out local connection failure [J]. Acta Materiae Compositae Sinica, 2019, 36(4): 881
8 邹广平, 张 冰, 唱忠良等. 复合材料泡沫夹芯板局部连接拉脱破坏试验与数值仿真 [J]. 复合材料学报, 2019, 36(4): 881
9 MohagheghianI, YuL, KabogluC, et al. Impact and mechanical evaluation of composite sandwich structures [J]. Comprehe- nsive Composite Materials II, 2018, 8: 239
10 XinY J, XiaoB, ChengS L, et al. Performance by localized indentation test of composite sandwich of open-cell aluminum foam and epoxy resin [J]. Chinese Journal of Materials Research, 2016, 30(9): 703
10 辛亚军, 肖 博, 程树良等. 开孔泡沫铝-环氧树脂复合夹芯板局压性能试验研究 [J]. 材料研究学报, 2016, 30(9): 703
11 XuY Y, ZhangY, WangZ, et al. Study on pyrolysis kinetics of typical carbon fiber bidirectional sheet [J]. Chinese Journal of Materials Research, 2017, 31(1): 57
11 徐艳英, 张 颖, 王 志等. 典型碳纤维编织布的热解动力学 [J]. 材料研究学报, 2017, 31(1): 57
12 SilvaJ C G D, AlvesJ L F, GaldinoW V D A, et al. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation [J]. Waste Management, 2018, 72: 265
13 RibeiroB, SantosL F P, SantosA L, et al. Thermal decomposition kinetic study of multiwalled carbon nanotubebuckypaper-reinforc ed poly (etherimide) composites [J]. Journal of Ther- moplastic Composite Materials, 2019, 32(1): 62
14 XuL. Investigatiom on thermal degradation and burning behavior of PVC [J]. Fire Science and Technology, 2014, (7): 741
14 徐 亮. 聚氯乙烯热解及火灾行为 [J]. 消防科学与技术, 2014(7): 741
15 ZhangY, WangZ, XuY Y, et al. Study on pyrolysis kinetics of high-strength glass fiber/epoxy resin composites [J]. Fire Science and Technology, 2017, (2): 149
15 张 颖, 王 志, 徐艳英等. 高强玻璃纤维复合材料热解动力学研究 [J]. 消防科学与技术, 2017, (2): 149
16 HuR Z, GaoS L, ZhaoF Q, et al. Thermal Analysis Kinetics, 2nd Edition [M]. Beijing: Science Press, 2008
16 胡荣祖, 高胜利, 赵凤起等. 热分析动力学, 第二版 [M]. 北京: 科学出版社, 2008
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!