Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 208-220    DOI: 10.11901/1005.3093.2023.254
  研究论文 本期目录 | 过刊浏览 |
冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制
徐龙1(), 李继文2, 崔传禹1, 卢祺1, 杨浩1, 赵聪聪1
1.季华实验室 材料科学与技术研究部 佛山 528200
2.中国科学院金属研究所 核用材料与安全评价重点实验室 沈阳 110016
Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution
XU Long1(), LI Jiwen2, CUI Chuanyu1, LU Qi1, YANG Hao1, ZHAO Congcong1
1.Materials Science and Technology Research Department, Ji Hua Laboratory, Foshan 528200, China
2.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
Long XU, Jiwen LI, Chuanyu CUI, Qi LU, Hao YANG, Congcong ZHAO. Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution[J]. Chinese Journal of Materials Research, 2024, 38(3): 208-220.

全文: PDF(23025 KB)   HTML
摘要: 

采用低压冷喷涂技术在Q235碳钢基材表面制备冷喷涂锌(CS-Zn)和锌铝合金涂层(CS-Zn15Al),使用SEM观察、XRD谱、测量开路电位、电化学阻抗谱和动电位极化曲线等手段对其表征,研究了涂层在NaCl溶液中的腐蚀行为和腐蚀产物影响涂层防护性能的机制。结果表明,CS-Zn涂层在NaCl溶液中浸泡期内腐蚀严重,而CS-Zn15Al涂层的腐蚀速率较低,耐蚀性能较好。CS-Zn的主要腐蚀产物是ZnO,其多孔状的结构特点和半导体属性会破坏产物层的致密结构,降低电荷转移电阻,促进涂层腐蚀反应的发生;而添加Al元素能促进保护性腐蚀产物Zn5(OH)8Cl2·H2O和层状双氢氧化物Zn6Al2(OH)16CO3·4H2O的生成,显著提高对腐蚀介质的屏蔽。同时,添加Al降低了涂层的腐蚀电位、增强了对涂层的阴极保护作用,保护性腐蚀产物层的生成降低了腐蚀电流密度,延长了涂层的使用寿命。添加Al元素可实现涂层防护性能和耐久性的协同提高。

关键词 材料失效与保护锌合金涂层电化学阻抗谱冷喷涂    
Abstract

Cold-sprayed coatings Zn (CS-Zn) and Zn15Al alloy (CS-Zn15Al) were prepared on Q235 carbon steel plates via low-pressure cold spraying technique. The corrosion behavior of the coatings in 3.5% NaCl aqueous solution was assessed by means of electrochemical measurement of open circuit potential, electrochemical impedance and potentiodynamic polarization curves, as well as SEM with EDS, XRD. The results indicate that the CS-Zn coating undergoes severe corrosion during immersion, while the CS-Zn15Al coating corrodes at a slower rate and exhibits superior corrosion resistance. XRD results reveal that the dominant corrosion product of CS-Zn is ZnO, which possesses porous structural characteristics that disrupt the compactness of the corrosion product layer. Furthermore, its semiconductor properties decrease the charge transfer resistance, thereby accelerating the process of corrosion. In the contrast, as for CS-Zn15Al, the incorporation of Al facilitates the formation of protective corrosion products, namely Zn5(OH)8Cl2·H2O and layered double hydroxides Zn6Al2(OH)16CO3·4H2O. The shielding effect of CS-Zn15Al coating was significantly enhanced by this layer of corrosion products. Furthermore, electrochemical measurements demonstrate that the addition of Al reduces the corrosion potential of the coating, thereby enhancing its cathodic protection ability, and decreases the corrosion current density due to the generation of protective corrosion products. In conclusion, the addition of Al can synergistically enhance the anticorrosion performance and durability of the coating.

Key wordsmaterial failure and protection    zinc alloy coatings    electrochemical impedance spectroscopy    cold spraying
收稿日期: 2023-05-08     
ZTFLH:  TG174  
基金资助:广东省基础与应用基础研究基金(2020A1515110982)
通讯作者: 徐龙,xulong@jihualab.com,研究方向为海水腐蚀与防护涂层
Corresponding author: XU Long, Tel:17755333229, E-mail: xulong@jihualab.com
作者简介: 徐 龙,男,1992年生,博士
图1  Zn粉和Zn15Al合金粉形貌的二次电子像和背散射像以及Zn和Zn15Al粉体的粒径分布
SampleAlFeSiPbCdZn
Zn0.05210.02530.03950.00310.0029Bal.
Zn15Al14.7520.12510.08950.00310.0029Bal.
表1  Zn和Zn15Al合金粉的化学成分
ElementCMnSiSPFe
Content≤ 0.12≤ 0.50≤ 0.30≤ 0.04≤ 0.03Bal.
表2  Q235碳钢基材的化学成分
图2  CS-Zn涂层截面的形貌和元素分布
图3  CS-Zn15Al涂层截面的形貌和元素分布
图4  冷喷涂CS-Zn及CS-Zn15Al涂层的XRD谱
图5  涂层的开路电位和低频阻抗模值随浸泡时间的变化
图6  浸泡4416 h后CS-Zn涂层界面处的形貌和元素分布
图7  浸泡4416 h后CS-Zn15Al涂层界面处的形貌和元素分布
图8  浸泡4416 h后涂层腐蚀产物的物相分析
图9  浸泡后涂层的表层和内层腐蚀产物的形貌
Element1#2#3#4#5#
Zn63.268.164.660.762.2
O36.131.925.133.521.7
Cl0.7-10.33.415.4
Al---2.40.7
表3  不同位置对应元素EDS结果
图10  浸泡不同时间和表层产物去除后涂层的极化曲线
图11  不同浸泡时间极化曲线的腐蚀电流密度与腐蚀电位
图12  CS-Zn和CS-Zn15Al涂层的Nyquist图随浸泡时间的变化
图13  CS-Zn和CS-Zn15Al涂层的Bode图和相位角随浸泡时间的变化
图14  等效电路示意图
t/ hRs/ Ω·cm2CPE1 / S·s n ·cm-2n1Rc/ Ω·cm2CPE2 / S·s n ·cm-2n2Rct/ Ω·cm2CPE3n3RFe/ Ω·cm2ChiSq
13.41.37 × 10-20.42272.38.34 × 10-40.6943.1---8.16 × 10-4
723.57.54 × 10-40.4111353.38 × 10-40.7827.4---3.80 × 10-4
1443.66.44 × 10-40.6114692.20 × 10-40.8396.3---3.63 × 10-4
2403.81.13 × 10-30.3920122.92 × 10-40.76402.2---4.17 × 10-4
7203.52.64 × 10-40.8125509.46 × 10-40.581033---2.55 × 10-4
14404.11.23 × 10-50.6233035.37 × 10-40.86751.5---5.35 × 10-4
24004.82.53 × 10-30.6929543.68 × 10-30.72291.77.68 × 10-60.799.251.09 × 10-4
36484.72.76 × 10-30.7121981.53 × 10-30.7882.33.59 × 10-60.7713.931.23 × 10-4
44164.86.10 × 10-30.7414576.17 × 10-30.5745.12.33 × 10-50.5929.35.60 × 10-5
表4  CS-Zn涂层不同时间点的阻抗谱拟合结果
t/ hRs/ Ω·cm2CPE1 / S·s n ·cm-2n1Rc/ Ω·cm2CPE2 / S·s n ·cm-2n2Rct/ Ω·cm2WCPE3 / S·s n ·cm-2n3RFe/ Ω·cm2ChiSq
13.42.12 × 10-40.6814079.55 × 10-40.656552----9.32 × 10-4
724.61.97 × 10-40.77321.51.48 × 10-30.623405----3.95 × 10-4
1443.32.73 × 10-40.75452.61.49 × 10-30.712614----5.63 × 10-4
2403.72.52 × 10-40.75439.62.54 × 10-30.6515472.5 × 10-3---5.08 × 10-4
7203.92.86 × 10-40.6921702.09 × 10-30.6910301.7 × 10-3---6.81 × 10-4
14404.11.32 × 10-40.5814201.76 × 10-40.7533571.5 × 10-3---8.70 × 10-5
24004.12.07 × 10-40.42361.52.91 × 10-40.666165----5.19 × 10-4
36484.75.40 × 10-40.56680.31.37 × 10-40.915290----5.19 × 10-4
44163.94.98 × 10-40.59389.23.11 × 10-40.824511-1.90 × 10-40.4143.82.28 × 10-4
表5  CS-Zn15Al涂层不同时间点阻抗谱的拟合数据
1 Han E H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend [J]. Mater. China, 2014, 33(2): 65
1 韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护——现状与趋势 [J]. 中国材料进展, 2014, 33(2): 65
2 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31(12): 1326
2 侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31(12): 1326
3 Yu F X. Research of preparation and protective performance of Zn-Al alloy coating by low pressure cold spray technology [D]. Qingdao: Qingdao University of Science & Technology, 2014
3 于福旭. 低压冷喷涂锌铝合金涂层制备及防护性能研究 [D]. 青岛: 青岛科技大学, 2014
4 Bala N, Singh H, Karthikeyan J, et al. Cold spray coating process for corrosion protection: a review [J]. Surf. Eng., 2014, 30(6): 414
doi: 10.1179/1743294413Y.0000000148
5 Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of Al(Y)-30%Al2O3 coating fabricated by low pressure cold spray technology [J]. Acta Metall. Sin., 2019, 55(10): 1338
5 白 杨, 王振华, 李相波 等. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为 [J]. 金属学报, 2019, 55(10): 1338
6 Li C J. The state-of-art of research and development on cold spraying in China [J]. Chin. Surf. Eng., 2009, 22(4): 5
6 李长久. 中国冷喷涂研究进展 [J]. 中国表面工程, 2009, 22(4): 5
7 Huang C J, Yin S, Li W Y, et al. Cold spray technology and its system: research status and prospect [J]. Surf. Technol., 2021, 50(7): 1
7 黄春杰, 殷 硕, 李文亚 等. 冷喷涂技术及其系统的研究现状与展望 [J]. 表面技术, 2021, 50(7): 1
8 Srikanth A, Basha G M T, Venkateshwarlu B. A brief review on cold spray coating process [J]. Mater. Today: Proc., 2020, 22: 1390
9 Liang Y L, Wang Z B, Zhang J B, et al. Formation of interfacial compounds and the effects on stripping behaviors of a cold-sprayed Zn-Al coating on interstitial-free steel [J]. Appl. Surf. Sci., 2015, 340: 89
doi: 10.1016/j.apsusc.2015.02.118
10 Wang K K, Wang S R, Xiong T Y, et al. Properties of Zn-Al-Mg-TiO2 coating prepared by cold spraying [J]. Surf. Coat. Technol., 2020, 387: 125549
doi: 10.1016/j.surfcoat.2020.125549
11 Lapushkina E, Yuan S, Mary N, et al. Contribution in optimization of Zn cold-sprayed coating dedicated to corrosion applications [J]. Surf. Coat. Technol., 2020, 400: 126193
doi: 10.1016/j.surfcoat.2020.126193
12 Lu J, Wang G H, Huang L Z, et al. State of the research of cold spraying anticorrosion coatings [J]. Surf. Technol., 2016, 45(9): 88
12 卢 静, 王光华, 黄乐之 等. 冷喷涂制备防腐涂层研究现状 [J]. 表面技术, 2016, 45(9): 88
13 McCune R C. The use of cold spray coating for corrosion protection [A]. Champagne V K. The Cold Spray Materials Deposition Process: Fundamentals and Applications [M]. Cambridge, England: Woodhead Publishing Limited, 2007: 302
14 Vinay G, Chavan N M, Kumar S, et al. Improved microstructure and properties of cold sprayed zinc coatings in the as sprayed condition [J]. Surf. Coat. Technol., 2022, 438: 128392
doi: 10.1016/j.surfcoat.2022.128392
15 Xu L, Liu F C, Han E H. Effect of PSS-PEDOT surface-modified Zn particles on anticorrosion performance of acrylic resin coating [J]. Chin. J. Mater. Res., 2019, 33(10): 776
doi: 10.11901/1005.3093.2019.205
15 徐 龙, 刘福春, 韩恩厚. PEDOT: PSS改性锌粉对冷涂锌涂层防护性能的影响 [J]. 材料研究学报, 2019, 33(10): 776
16 Liu Y W, Tan G B, Tang J H, et al. Enhanced corrosion and wear resistance of Zn-Ni/Cu-Al2O3 composite coating prepared by cold spray [J]. J. Solid State Electrochem., 2023, 27(2): 439
doi: 10.1007/s10008-022-05335-3
17 Lu X Q, Wang S R, Xiong T Y, et al. Anticorrosion properties of Zn-Al composite coating prepared by cold spraying [J]. Coatings, 2019, 9(3): 210
doi: 10.3390/coatings9030210
18 Lu X Q, Wang S R, Xiong T Y, et al. Anticorrosion properties of Zn-Al-Mg-ZnO composite coating prepared by cold spraying [J]. Surf. Rev. Lett., 2020, 27(9): 1950211
doi: 10.1142/S0218625X19502111
19 Zhao Z P, Tang J R, Tariq N U H, et al. Microstructure and corrosion behavior of cold-sprayed Zn-Al composite coating [J]. Coatings, 2020, 10(10): 931
doi: 10.3390/coatings10100931
20 Li H X, Li X B, Sun M X, et al. Corrosion resistance of cold-sprayed Zn-50Al coatings in seawater [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 62
20 李海祥, 李相波, 孙明先 等. 冷喷涂Zn-50Al复合涂层在海水中的耐蚀性能 [J]. 中国腐蚀与防护学报, 2010, 30(1): 62
21 Wu H S, Zhang L Y, Liu C S, et al. Deposition of Zn-G/Al composite coating with excellent cathodic protection on low-carbon steel by low-pressure cold spraying [J]. J. Alloys Compd., 2020, 821: 153483
doi: 10.1016/j.jallcom.2019.153483
22 Zhu L Q, Xu B P, Zhou M X, et al. Fabrication and characterization of Al-Zn-Cu composite coatings with different cu contents by cold spraying [J]. Surf. Eng., 2020, 36(10): 1090
doi: 10.1080/02670844.2020.1748339
23 Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of low pressure cold sprayed Zn-Ni composite coatings [J]. J. Alloys Compd., 2017, 719: 194
doi: 10.1016/j.jallcom.2017.05.134
24 Ma Q, Wang L D, Sun W, et al. Effect of chemical conversion induced by self-corrosion of zinc powders on enhancing corrosion protection performance of zinc-rich coatings [J]. Corros. Sci., 2022, 194: 109942
doi: 10.1016/j.corsci.2021.109942
25 Xu L, Liu F C, Wang Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings [J]. Prog. Org. Coat., 2018, 114: 90
26 Cao Y H, Zheng D J, Zhang F, et al. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review [J]. J. Mater. Sci. Technol., 2022, 102: 232
doi: 10.1016/j.jmst.2021.05.078
27 Fang L, He Q Q, Hu J M, et al. Research advance in application of 2D layered double hydroxides (LDHs) in corrosion protection of metals [J]. Corros. Sci. Prot. Technol., 2019, 31(6): 665
27 方 露, 何青青, 胡吉明 等. 二维层状双金属氢氧化物(LDHs)在金属腐蚀防护中应用的研究进展 [J]. 腐蚀科学与防护技术, 2019, 31(6): 665
28 Azevedo M S, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg, Al) coated steel: the effect of HCO 3 - and NH 4 + ions on the intrinsic reactivity of the coating [J]. Electrochim. Acta, 2015, 153: 159
doi: 10.1016/j.electacta.2014.09.140
29 Persson D, Thierry D, LeBozec N, et al. In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn-Al-Mg coated steel [J]. Corros. Sci., 2013, 72: 54
doi: 10.1016/j.corsci.2013.03.005
30 Xu L, Liu F C, Han E H, et al. Corrosion resistance and mechanism of one-component organic Zn15Al-rich coating [J]. Prog. Org. Coat., 2019, 132: 305
31 Duchoslav J, Steinberger R, Arndt M, et al. Evolution of the surface chemistry of hot dip galvanized Zn-Mg-Al and Zn coatings on steel during short term exposure to sodium chloride containing environments [J]. Corros. Sci., 2015, 91: 311
doi: 10.1016/j.corsci.2014.11.033
32 Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
doi: 10.1016/j.corsci.2016.04.022
33 Prosek T, Persson D, Stoulil J, et al. Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions [J]. Corros. Sci., 2014, 86: 231
doi: 10.1016/j.corsci.2014.05.016
34 Zhang Z Y, Zhang J, Zhao X Y, et al. Effects of al-mg on the microstructure and phase distribution of Zn-Al-Mg coatings [J]. Metals, 2022, 13(1): 46
doi: 10.3390/met13010046
35 Hosking N C, Ström M A, Shipway P H, et al. Corrosion resistance of zinc-magnesium coated steel [J]. Corros. Sci., 2007, 49(9): 3669
doi: 10.1016/j.corsci.2007.03.032
[1] 李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
[2] 胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
[3] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[6] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[8] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[9] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[14] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.