Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 228-234    DOI: 10.11901/1005.3093.2021.671
  研究论文 本期目录 | 过刊浏览 |
SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究
朱明星1, 戴中华2()
1.铜陵职业技术学院机械工程系 铜陵 244000
2.西安工业大学光电工程学院 西安 710021
Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics
ZHU Mingxing1, DAI Zhonghua2()
1.Tongling Polytechnic Department of Mechanical Engineering, Tongling 244000, China
2.School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China
引用本文:

朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
Mingxing ZHU, Zhonghua DAI. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. Chinese Journal of Materials Research, 2023, 37(3): 228-234.

全文: PDF(2872 KB)   HTML
摘要: 

采用SrSc0.5Nb0.5O3与(Bi0.5Na0.5)(Ti0.95Al0.025Nb0.025)O3固溶构建了无铅陶瓷体系材料(1-x)(Bi0.5Na0.5Ti0.95Al0.025-Nb0.025O3)-x(SrSc0.5Nb0.5O3)(简记为(1-x)BNTA-xSSN,x=5%、10%、15%、20%,摩尔分数)。通过传统固相反应法制备陶瓷,研究了SrSc0.5Nb0.5O3的引入对其结构、相变、储能和介电性能的影响。研究结果表明,(1-x)BNTA-xSSN样品为钙钛矿结构。其最大介电常数对应温度Tm随着SSN含量的增加而减小,相结构由四方相向伪立方相发生转变,陶瓷的铁电性减弱,弛豫性增强。当x=10%时,样品具有最大有效储能密度(Wrec)2.7 J/cm3;当x=15%时,样品具有最大储能效率(η)85%。

关键词 无机非金属材料相结构陶瓷弛豫铁电体储能密度    
Abstract

A new lead-free ceramic system (1-x)(Bi0.5Na0.5Ti0.95Al0.025Nb0.025O3)-x(SrSc0.5Nb0.5O3) [(1-x)BNTA-xSSN, x=0.05、0.1、0.15、0.2] was prepared by solid-state method. The effects of the introduction of SrSc0.5Nb0.5O3 on the structure, phase transformation, energy storage and dielectric properties were studied. The results showed that (1-x)BNTA-xSSN owns perovskite structure at room temperature. The Tmdecreases with the increase of SSN content, and the phase structure changes from tetragonal phase to pseudo-cubic phase. The ferroelectric properties of the ceramics were weakened and the relaxation ferroelectric properties were enhanced. When x=10%, the maximum effective energy storage density (Wrec) of BNTA-SSN ceramics is 2.7 J/cm3. The maximum energy storage efficiency (η) of BNTA-SSN ceramics is 85% at x=15%.

Key wordsinorganic non-metallic materials    phase structure    ceramics    relaxor ferroelectrics    energy storage density
收稿日期: 2021-12-06     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(51062014);陕西省重点研发计划(2023-YBGY-423);西安市智能重点实验室项目(2019220514SYS020CG042)
通讯作者: 戴中华,教授,zhdai@mail.xjtu.edu.cn,研究方向为电子材料与器件
Corresponding author: DAI Zhonghua, Tel: 18092679085, E-mail: zhdai@mail.xjtu.edu.cn
作者简介: 朱明星,男,1969年生,副教授
图1  (1-x)BNTA-xSSN陶瓷XRD谱
图2  (1-x)BNTA-xSSN陶瓷电子显微镜照片
图3  (1-x)(BNTA)-xSSN陶瓷的介电常数-温度的关系
图4  (1-x)BNTA-xSSN陶瓷ln(1/ε-1/εm)与ln(T-Tc)的关系图以及弥散因子γ与SSN含量的关系
Componentsx=0.05x=0.1x=0.15x=0.2
Tm /℃301295286278
Td /℃156918576
表1  (1-x)(BNTA)-xSSN陶瓷的Tm与Td值
图5  (a) 陶瓷材料的储能示意图; (b) (1-x)(BNTA)-xSSN陶瓷在10Hz下的P-E曲线; (c) 0.90(BNTA)-0.10SSN陶瓷在不同外加电场下的P-E曲线; (d)120kV/cm电场不同频率下的P-E曲线
图6  (1-x)(BNTA)-xSSN陶瓷的W与Wrec的关系、效率η与Wloss的关系、Pmax与Pr、△P的关系以及△P与场强的关系
1 Hou D W, Fan H Q, Zhang A, et al. Enhanced energy-storage properties and dielectric temperature stability of (Bi0.5Na0.5)0.84Sr0.16Ti1-x(Y0.5Nb0.5)xO3 lead-free ceramics [J]. Ceram Int, 2021, 47(24): 34059
doi: 10.1016/j.ceramint.2021.08.315
2 Peng P, Nie H C, Zheng C, et al. High-energy storage density in NaNbO3-modified (Bi0.5Na0.5)TiO3-BiAlO3-based lead-free ceramics under low electric field [J]. J. Am. Ceram. Soc., 2021, 104(6): 2610
doi: 10.1111/jace.v104.6
3 FANG B J, LIU X, ZHANG Z Q, et al. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics, Chin J Mater Res., 2017, 31(04): 248
3 方必军, 刘 星, 张震乾 等. BCZT无铅压电陶瓷的铁电相变 [J]. 材料研究学报, 2017, 31(04): 248
4 Love G R. Energy storage in ceramic dielectrics [J]. J. Am. Ceram. Soc., 1990, 73(2): 323
doi: 10.1111/jace.1990.73.issue-2
5 Gu Y, Li H B, Ma H H, et al. Research progress of dielectric materials for energy storage [J]. Insulating Materials, 2015, 48(11): 13
6 Burn I, Smyth D M. Energy storage in ceramic dielectrics [J]. J Mater Sci., 2012, 7(3): 339
doi: 10.1007/BF00555636
7 Dai Z H, Xie J L, Liu W G, et al. Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO3-Based Bulk Ceramics [J]. ACS Appl Mater & Inter., 2020, 27: 30289
8 Fletcher N H, Hilton A D, Ricketts B W. Optimization of energy storage density in ceramic capacitors [J]. J Phys D Appl Phys, 2009, 29(1): 253
doi: 10.1088/0022-3727/29/1/037
9 Zhang L, Hao X H, Zhang L W. Enhanced energy-storage performances of Bi2O3-Li2O added (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 thick films [J]. Ceram Int, 2014, 40(6): 8847
doi: 10.1016/j.ceramint.2014.01.107
10 Jürgen R, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics [J]. J. Am. Ceram. Soc., 2009, 92(6): 25
11 Sun N N, Li Y, Liu X J, et al. High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures [J]. J. Power Sources, 2020, 488: 227457
12 Qi H, Zuo R Z, Xie A W, et al. Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains [J]. Adv Funct Mater, 2019, 29(35): 1903877
doi: 10.1002/adfm.v29.35
13 Qi H, Zuo R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency [J]. J. Mater. Chem. A, 2019, 7(8): 3971
doi: 10.1039/C8TA12232F
14 Zhao N S, Fan H Q, Ning L, et al. Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2018, 101(12): 5578
doi: 10.1111/jace.2018.101.issue-12
15 Zhou M X, Liang R H, Zhou Z Y, et al. High energy storage properties of (Ni1/3Nb2/3)4+ complexion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics [J]. Mater. Res. Bull, 2018, 98: 166
doi: 10.1016/j.materresbull.2017.10.005
16 Liu B B, Wang X H, Li L S. Properties and microstructure of ultrafine crystalline barium titanate-based energy storage ceramics [J]. J. Chin. Eng, 2017, 39(6): 896
16 刘佰博, 王晓慧, 李龙土. 超细晶钛酸钡基储能陶瓷的性能与微观结构 [J]. 工程科学学报, 2017, 39(6): 896
17 Xie J L, Dai Z H, Ding X D, et al. Enhanced energy storage properties of Sr(Sc0.5Nb0.5)O3 modified (Bi0.47La0.03Na0.5)0.94Ba0.06TiO3 lead-free ceramics [J]. J Mater Sci, 2020, 45: 6
18 Yang H B, Liu P F, Yan F, et al. A novel lead-free ceramic with layered structure for high energy storage applications [J]. J Alloys Compd, 2019, 773: 244
doi: 10.1016/j.jallcom.2018.09.252
19 Nitish K, Aleksey I, Troy A, et al. Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications [J]. Appl Phys Lett, 2015, 106(252901): 106
20 Huang W, Chen Y, Li X, et al. Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics [J]. Appl Phys Lett, 2018, 113(20): 203902
doi: 10.1063/1.5054000
21 Wang X H, Li L T, Shen Z B, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications [J]. J. Mater. Chem. A, 2015, 3(35): 18146
doi: 10.1039/C5TA03614C
22 Du H L, Yang Z T, Gao F, et al. Lead-free Nonlinear Dielectric Ceramics for Energy Storage Applications: Current Status and Challenges [J]. J. Inorg Mater, 2018, 33: 1046
doi: 10.15541/jim20170594
22 杜红亮, 杨泽田, 高 峰 等. 无铅非线性介电储能陶瓷: 现状与挑战 [J]. 无机材料学报, 2018, 33: 1046
doi: 10.15541/jim20170594
23 Ogihara H, Randall C A, Susan T M. High energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics [J]. J. Am. Ceram. Soc., 2009, 92(8): 6
24 Neusel C, Jelitto H, Schneider G A. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown [J]. J. Appl Phys, 2015, 117(15): 154902
doi: 10.1063/1.4917208
25 Yuan Q B, Li G, Yao F Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics [J]. Nano Energy, 2018, 52: 203
doi: 10.1016/j.nanoen.2018.07.055
26 Wang X H, Wang H B, Mu M L, et al. Effect of Zn2P2O7 additive on the electrical breakdown strength and energy storage properties of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics [J]. Mater. Sci. Eng. B-Adv, 2017, 227: 22
doi: 10.1016/j.mseb.2017.10.004
27 Cheng H L, Zhou W C, Du H L, et al. Enhanced dielectric relaxor properties in (1-x)(K0.5Na0.5)NbO3-x(Ba0.6Sr0.4)0.7Bi0.2TiO3 lead-free ceramic [J]. J. Alloys Compd, 2013, 579: 192
doi: 10.1016/j.jallcom.2013.06.077
28 Amany E H, Ahmed E H, Desoky M M E. Observation of relaxor-like behavior in BT and PT doped glasses for energy storage applications [J]. J. Alloys Compd, 2018, 770: 906
doi: 10.1016/j.jallcom.2018.08.234
29 Li W B, Zhou D, Pang L X, et al. Novel barium titanate based capacitors with high energy density and fast discharge performance [J]. J. Mater. Chem. A, 2017, 5(37): 19607
doi: 10.1039/C7TA05392D
30 Yuan Q B, Yao F Z, Wang Y F, et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties [J]. J. Mater. Chem. C, 2017, 5(37): 9552
doi: 10.1039/C7TC02478A
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.