|
|
CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能 |
田志刚, 李新梅( ), 秦忠, 王晓辉, 刘伟斌, 黄永 |
新疆大学机械工程学院 乌鲁木齐 830047 |
|
Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating |
TIAN Zhigang, LI Xinmei( ), QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong |
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China |
引用本文:
田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
Zhigang TIAN,
Xinmei LI,
Zhong QIN,
Xiaohui WANG,
Weibin LIU,
Yong HUNG.
Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating[J]. Chinese Journal of Materials Research, 2023, 37(3): 219-227.
1 |
Yeh J W, Chen S K, Lin S J, et al. Microstructural control and properties optimization of high-entropy alloys [J]. Advanced Engineering Materials, 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
|
2 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
|
3 |
Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
|
4 |
Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Materialia, 2013, 61(7): 2628
doi: 10.1016/j.actamat.2013.01.042
|
5 |
Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375
|
6 |
Yang Y, Hao Q F. Lattice distortion in high entropy alloys [J]. Acta Metall Sinica, 2021, 57(04): 385
|
6 |
杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57(04): 385
|
7 |
Yeh J W, Recent progress in high-entropy alloys [J]. European Journal of Control, 2006, 31(6): 633
|
8 |
Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2
doi: 10.1007/s40843-017-9195-8
|
9 |
Nong Z S, Lei Y N, Zhu J C. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys [J]. Intermetallics, 2018, 101: 144
doi: 10.1016/j.intermet.2018.07.017
|
10 |
Nene S S, Frank M, Liu K, et al. Corrosion-resistant high entropy alloy with high strength and ductility [J]. Scripta Materialia, 2019, 166: 168
doi: 10.1016/j.scriptamat.2019.03.028
|
11 |
Erdogan A, Dleker K M, Zeytin S. Effect of laser re-melting on electric current assistive sintered CoCrFeNiAl x Ti y high entropy alloys: Formation, micro-hardness and wear behaviors [J]. Surface and Coatings Technology, 2020, 399: 126179
doi: 10.1016/j.surfcoat.2020.126179
|
12 |
Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review [J]. Optics and Laser Technology, 2021, 138
|
13 |
Jyoti M, Akash V, Pringal P, et al. Wear, erosion and corrosion behavior of laser cladded high entropy alloy coatings–A review [J]. Materials Today: Proceedings, 2020, 38: 2824
doi: 10.1016/j.matpr.2020.08.763
|
14 |
Samuel A U, Fayomi O S I, Omotosho A. O. Prospect of high entropy alloys (HETAs) for advance application [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1107(1): 012162
|
15 |
Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying [J]. Optics & Laser Technology, 2021, 134(8): 106619
|
16 |
Zhang S, Han B, Li M, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating [J]. Intermetallics, 2021, 131(9): 107111
doi: 10.1016/j.intermet.2021.107111
|
17 |
Gu Z, Xi S, Sun C. Microstructure and properties of laser cladding and CoCr2.5FeNi2Ti x high-entropy alloy composite coatings [J]. Journal of Alloys and Compounds, 2019, 819
|
18 |
Liu Q, Wang X Y, Huang Y B, et al. Effect of Mo content on microstructure and Corrosion Resistance of CoCrFeNiMo high entropy alloy [J]. Chinese Journal of Materials Research, 2020, 34(11): 868
|
18 |
刘 谦, 王昕阳, 黄燕滨 等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34(11): 868
|
19 |
Zhang S, Han B, Li M, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating[J]. Intermetallics, 2021, 131(9): 107111
doi: 10.1016/j.intermet.2021.107111
|
20 |
Soni V K, Sanyal S, Sinha S K. Phase evolution and mechanical properties of novel FeCoNiCuMo x high entropy alloys [J]. Vacuum, 2020, 174: 109173
doi: 10.1016/j.vacuum.2020.109173
|
21 |
Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSi x high entropy alloys [J]. Materials Letters, 2021, 282(12815): 128809
doi: 10.1016/j.matlet.2020.128809
|
22 |
Zhang Y, Zhou Y J, Lin J P, et al. Solid‐solution phase formation rules for multi‐component alloys [J]. Advanced Engineering Materials, 2008, 10(6): 534
doi: 10.1002/(ISSN)1527-2648
|
23 |
Yang X, Chen, S Y, Cotton, J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. Jom, 2014, 66 (10), 2009
doi: 10.1007/s11837-014-1059-z
|
24 |
Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96
doi: 10.1016/j.intermet.2013.05.002
|
25 |
Dong Y, Yi P, et al. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys [J]. Intermetallics, 2014, 52: 105
doi: 10.1016/j.intermet.2014.04.001
|
26 |
Akira T, Akihisa I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transnctions, 2005, 46(12): 2817
|
27 |
Gu Z, Xi S Q, Sun C F. Microstructure and properties of laser cladding and CoCr2.5FeNi2Ti x high-entropy alloy composite coatings [J]. Journal of Alloys and Compounds, 2020, 819(C)
|
28 |
Hui Z, He Y Z, Pan Y, et al. Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating [J]. Intermetallics, 2011, 19(8): 1130
doi: 10.1016/j.intermet.2011.03.017
|
29 |
Ma M X, Wang Z X, Zhou J C Z, al et,. Effect of Ti doping on microstructure and wear resistance of CoCrCuFeMn high entropy alloy [J]. Chinese Journal of Mechanical Engineering, 2020, 56(10): 110
|
29 |
马明星, 王志新, 周家臣 等. Ti掺杂对CoCrCuFeMn高熵合金组织结构和耐磨性的影响 [J]. 机械工程学报, 2020, 56(10): 110
doi: 10.3901/JME.2020.10.110
|
30 |
Jin B, Zhang N, Yu H, et al. AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance [J]. Surface and Coatings Technology, 2020, 402(4): 126328
doi: 10.1016/j.surfcoat.2020.126328
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|