Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 219-227    DOI: 10.11901/1005.3093.2021.428
  研究论文 本期目录 | 过刊浏览 |
CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能
田志刚, 李新梅(), 秦忠, 王晓辉, 刘伟斌, 黄永
新疆大学机械工程学院 乌鲁木齐 830047
Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating
TIAN Zhigang, LI Xinmei(), QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
引用本文:

田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
Zhigang TIAN, Xinmei LI, Zhong QIN, Xiaohui WANG, Weibin LIU, Yong HUNG. Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating[J]. Chinese Journal of Materials Research, 2023, 37(3): 219-227.

全文: PDF(17586 KB)   HTML
摘要: 

用激光熔覆工艺在40Cr钢表面制备CoCrFeNiTi x (x=0、0.2、0.5、0.8)高熵合金涂层并计算其热力学参数,使用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、显微硬度仪、摩擦磨损试验机等手段检测合金的物相组成、组织、元素分布、硬度及耐磨性,研究了Ti元素含量对其显微组织和耐磨性能的影响。结果表明:随着Ti元素含量的提高,合金物相在面心立方(FCC)结构的基础上形成了体心立方(BCC)结构,熔覆层中部的组织由晶界明显、晶粒分布均匀的等轴晶组成,最后形成了柱状树枝晶;随着Ti元素含量的提高,合金横截面的硬度逐渐提高,最高为412.32 HV0.2,比基体的硬度提高了1.8倍;涂层的磨损量和摩擦系数均随之降低,Ti含量为0.8时涂层其耐磨性能最优,磨损量最小为6.8 mg,摩擦系数为0.35。涂层的磨损机制,以磨粒磨损、粘着磨损和氧化磨损为主。

关键词 金属材料高熵合金涂层激光熔覆耐磨性能    
Abstract

CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8) high-entropy alloy coating was prepared on 40Cr steel surface by laser cladding technology and its thermodynamic parameters were calculated. The phase composition, microstructure, element distribution, hardness and wear resistance of the alloy were detected by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), microhardness tester and friction and wear tester. The effects of Ti content on the microstructure and wear resistance of the alloy were investigated. The results show that with the increase of Ti content, the alloy phase forms a body-centered cubic (BCC) structure on the basis of the face-centered cubic (FCC) structure. The microstructure in the middle of the cladding layer is composed of equiaaxial crystals with obvious grain boundaries and uniform grain distribution, and finally the columnar dendrites are formed. With the increase of Ti content, the hardness of cross section of the alloy increases gradually, and the highest is 412.32 HV0.2, which is 1.8 times higher than that of the matrix. The wear amount and friction coefficient of the coating decrease accordingly. When Ti content is 0.8, the coating has the best wear resistance, the minimum wear amount is 6.8mg, and the friction coefficient is 0.35. The wear mechanism of coating is mainly abrasive wear, adhesive wear and oxidation wear.

Key wordsmetallic materials    high entropy alloy coating    laser cladding    wear resistance
收稿日期: 2021-07-28     
ZTFLH:  TG131  
基金资助:国家自然科学基金(52161017);国家自然科学基金(51865055);新疆维吾尔自治区自然科学基金(2022D01C386)
通讯作者: 李新梅,教授,35335499@qq.com,研究方向为材料表面改性
Corresponding author: LI Xinmei, Tel: 17716909771, E-mail: 35335499@qq.com
作者简介: 田志刚,男,1994年生,硕士生
ElementCrMnCSiSpCuNi
Content/%0.80~1.100.50~0.800.37~0.40.17~0.37≤0.035≤0.035≤0.035≤0.035
表1  40Cr钢材料化学成分
Laser power / kWScanning speed / mm·s-1Spot diameter / mmOverlap ratio
1.16250%
表2  实验工艺参数
Alloyδ / %ΔHmixΔSmixΩVECΔχ
CoCrFeNiTi01.06-3.7511.533.718.250.097
CoCrFeNiTi0.23.66-7.3512.572.768.050.112
CoCrFeNiTi0.55.33-11.5613.151.867.780.127
CoCrFeNiTi0.86.26-14.6913.351.57.540.137
表3  CoCrFeNiTi x 高熵合金的相关计算参数
ElementCoCrFeNiTi
Co--4-10-28
Cr---1-7-7
Fe----2-17
Ni-----35
Ti-----
表4  CoCrFeNiTi x 高熵合金中不同原子对的ΔHijmix混合焓(kJ/mol)[26]
图1  CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8)高熵合金的XRD图谱
图2  CoCrFeNiTi x (x=0、0.2、0.5、0.8)高熵合金的SEM图
xRegionElements / %, atom fraction
CoCrFeNiTi
x=0Nominal252525250
A14.7913.5458.9012.770
B14.5016.8855.4513.170
x=0.2Nominal23.8123.8123.8123.814.76
A18.9520.4742.0416.731.81
B18.0920.7637.8117.336.01
x=0.5Nominal22.2222.2322.2222.2211.11
A13.0114.7057.3511.523.41
B13.6410.8641.1714.7619.58
x=0.8Nominal20.8320.8320.8420.8316.67
A9.7212.3265.038.514.41
B10.1112.8461.049.026.98
表5  CoCrFeNiTi x 高熵合金涂层的微区EDS分析
图3  CoCrFeNiTi x (x=0,0.5)高熵合金面扫描和元素分布
图4  CoCrFeNiTi x (x=0、0.2、0.5、0.8)的显微硬度
图5  CoCrFeNiTi x (x=0、0.2、0.5、0.8)高熵合金涂层的磨损量和平均摩擦系数
图6  CoCrFeNiTi x (x=0、0.2、0.5、0.8)高熵合金涂层的磨损痕迹3D形貌
图7  40Cr钢和CoCrFeNiTi x (x=0、0.2、0.5、0.8)高熵合金涂层的磨损表面形貌
xCoCrFeNiTiOC
01.191.4734.580.8902.9158.94
0.24.954.6946.534.491.2027.5210.62
0.54.805.1347.673.954.4519.8814.11
0.82.653.1428.172.382.2948.7112.68
表6  CoCrFeNiTi x (x=0、0.2、0.5、0.8)高熵合金涂层的磨损表面EDS能谱分析(原子分数, %)
1 Yeh J W, Chen S K, Lin S J, et al. Microstructural control and properties optimization of high-entropy alloys [J]. Advanced Engineering Materials, 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
3 Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
4 Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Materialia, 2013, 61(7): 2628
doi: 10.1016/j.actamat.2013.01.042
5 Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375
6 Yang Y, Hao Q F. Lattice distortion in high entropy alloys [J]. Acta Metall Sinica, 2021, 57(04): 385
6 杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57(04): 385
7 Yeh J W, Recent progress in high-entropy alloys [J]. European Journal of Control, 2006, 31(6): 633
8 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2
doi: 10.1007/s40843-017-9195-8
9 Nong Z S, Lei Y N, Zhu J C. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys [J]. Intermetallics, 2018, 101: 144
doi: 10.1016/j.intermet.2018.07.017
10 Nene S S, Frank M, Liu K, et al. Corrosion-resistant high entropy alloy with high strength and ductility [J]. Scripta Materialia, 2019, 166: 168
doi: 10.1016/j.scriptamat.2019.03.028
11 Erdogan A, Dleker K M, Zeytin S. Effect of laser re-melting on electric current assistive sintered CoCrFeNiAl x Ti y high entropy alloys: Formation, micro-hardness and wear behaviors [J]. Surface and Coatings Technology, 2020, 399: 126179
doi: 10.1016/j.surfcoat.2020.126179
12 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review [J]. Optics and Laser Technology, 2021, 138
13 Jyoti M, Akash V, Pringal P, et al. Wear, erosion and corrosion behavior of laser cladded high entropy alloy coatings–A review [J]. Materials Today: Proceedings, 2020, 38: 2824
doi: 10.1016/j.matpr.2020.08.763
14 Samuel A U, Fayomi O S I, Omotosho A. O. Prospect of high entropy alloys (HETAs) for advance application [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1107(1): 012162
15 Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying [J]. Optics & Laser Technology, 2021, 134(8): 106619
16 Zhang S, Han B, Li M, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating [J]. Intermetallics, 2021, 131(9): 107111
doi: 10.1016/j.intermet.2021.107111
17 Gu Z, Xi S, Sun C. Microstructure and properties of laser cladding and CoCr2.5FeNi2Ti x high-entropy alloy composite coatings [J]. Journal of Alloys and Compounds, 2019, 819
18 Liu Q, Wang X Y, Huang Y B, et al. Effect of Mo content on microstructure and Corrosion Resistance of CoCrFeNiMo high entropy alloy [J]. Chinese Journal of Materials Research, 2020, 34(11): 868
18 刘 谦, 王昕阳, 黄燕滨 等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34(11): 868
19 Zhang S, Han B, Li M, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating[J]. Intermetallics, 2021, 131(9): 107111
doi: 10.1016/j.intermet.2021.107111
20 Soni V K, Sanyal S, Sinha S K. Phase evolution and mechanical properties of novel FeCoNiCuMo x high entropy alloys [J]. Vacuum, 2020, 174: 109173
doi: 10.1016/j.vacuum.2020.109173
21 Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSi x high entropy alloys [J]. Materials Letters, 2021, 282(12815): 128809
doi: 10.1016/j.matlet.2020.128809
22 Zhang Y, Zhou Y J, Lin J P, et al. Solid‐solution phase formation rules for multi‐component alloys [J]. Advanced Engineering Materials, 2008, 10(6): 534
doi: 10.1002/(ISSN)1527-2648
23 Yang X, Chen, S Y, Cotton, J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. Jom, 2014, 66 (10), 2009
doi: 10.1007/s11837-014-1059-z
24 Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96
doi: 10.1016/j.intermet.2013.05.002
25 Dong Y, Yi P, et al. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys [J]. Intermetallics, 2014, 52: 105
doi: 10.1016/j.intermet.2014.04.001
26 Akira T, Akihisa I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transnctions, 2005, 46(12): 2817
27 Gu Z, Xi S Q, Sun C F. Microstructure and properties of laser cladding and CoCr2.5FeNi2Ti x high-entropy alloy composite coatings [J]. Journal of Alloys and Compounds, 2020, 819(C)
28 Hui Z, He Y Z, Pan Y, et al. Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating [J]. Intermetallics, 2011, 19(8): 1130
doi: 10.1016/j.intermet.2011.03.017
29 Ma M X, Wang Z X, Zhou J C Z, al et,. Effect of Ti doping on microstructure and wear resistance of CoCrCuFeMn high entropy alloy [J]. Chinese Journal of Mechanical Engineering, 2020, 56(10): 110
29 马明星, 王志新, 周家臣 等. Ti掺杂对CoCrCuFeMn高熵合金组织结构和耐磨性的影响 [J]. 机械工程学报, 2020, 56(10): 110
doi: 10.3901/JME.2020.10.110
30 Jin B, Zhang N, Yu H, et al. AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance [J]. Surface and Coatings Technology, 2020, 402(4): 126328
doi: 10.1016/j.surfcoat.2020.126328
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.