Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (10): 769-774    DOI: 10.11901/1005.3093.2014.213
  本期目录 | 过刊浏览 |
PVP/PCL纳米纤维复合支架的生物活性*
刘淑琼1,肖秀峰2()
1. 武夷学院生态与资源工程学院 武夷山 354300
2. 福建师范大学化学与化工学院 福州 350007
Cytocompatibility of PCL/PVP Composite Nanofibrous Scaffolds
Shuqiong LIU1,Xiufeng XIAO2,**()
1. Ecology and Resource Engineering, Wuyi University, Wuyishan 354300
2. College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007
引用本文:

刘淑琼,肖秀峰. PVP/PCL纳米纤维复合支架的生物活性*[J]. 材料研究学报, 2014, 28(10): 769-774.
Shuqiong LIU, Xiufeng XIAO. Cytocompatibility of PCL/PVP Composite Nanofibrous Scaffolds[J]. Chinese Journal of Materials Research, 2014, 28(10): 769-774.

全文: PDF(3934 KB)   HTML
摘要: 

以二氧六环/水为溶剂体系, 以聚己内酯(PCL)和聚乙烯吡咯烷酮(PVP)为原料, 采用相分离法制备纳米纤维支架, 研究了陈化、溶剂比例和PVP含量对支架的纳米纤维结构形成的影响, 以及PVP的添加对支架生物活性和亲水性能的影响。结果表明, 陈化直接影响纳米纤维网络结构的形成; 溶剂体系和PVP含量均影响纳米纤维结构, 随着PVP含量的提高纳米纤维结构逐渐消失。随着PVP含量的提高, 支架的亲水性能提高。PVP/PCL复合纳米纤维支架浸泡模拟体液(SBF)后在其内部和表面皆生成碳磷灰石(CHA)涂层, 表明该纳米纤维支架具有良好的生物活性, 且PVP/PCL支架比纯PCL支架能更快诱导生成碳磷灰石。

关键词 有机高分子材料聚己内酯聚乙烯吡咯烷酮陈化纳米纤维相分离    
Abstract

By using polycarpolactone (PCL) and polyvinylpyrrolidone (PVP) as raw materials, a series of nanofibrous scaffolds were fabricated by thermally induced phase separation in a dioxane/water system. The effect of aging temperature, PVP content and different ratios of dioxane to water on the morphology of nanofibrous scaffolds was investigated. The effect of PVP content on the biological activity and hydrophilic performance of the prepared nanofibrous scaffolds were also examined. The results show that aging process played a crucial role in forming the unique nanofibrous structure. The solvent system and the PVP content affect the nanofibrous structure, peculiarly; the nanofibrous structure would disappear gradually with the increasing PVP content. The result of the water absorption shows that the hydrophilic performance of the nanofibrous stent increases with the increasing PVP content. Furthermore, the test of biological activity shows that there exists crystallite carbonate hydroxyapatite in the scaffolds, indicating that the PCL/PVP nanofiberous scaffolds have a good biological activity, and which may much rapidly facilitate the forming of crystallite carbonate hydroxyapatite rather than the merely PCL ones.

Key wordsorganic polymer materials    polycarpolactone    polyvinylpyrrolidone    aging    nanofibrous    phase separation
收稿日期: 2014-04-25     
基金资助:* 国家自然科学基金30970887和武夷学院青年教师专项科研基金xq201102资助项目。
图1  有无陈化的PVP/PCL复合支架电镜照片(a) 直接-20℃冷冻2 h, (b) 先0℃凝胶3 h, 再-20℃冷冻2 h
图2  不同溶剂体系的PVP/PCL复合支架电镜照片
图3  不同PVP含量的PCL/PVP复合支架的电镜照片
图4  不同PVP含量的PCL/PVP复合支架浸泡模拟体液14 d后的电镜照片
图5  20%PVP含量的PCL/PVP复合支架浸泡模拟体液不同时间后的电镜照片
图6  PCL/PVP(30%) 支架浸泡模拟体液不同时间后的FTIR谱图
Mass fraction of PVP (%) Gelation temperature (℃) Mass ratio of dioxane /water Porosity (%) Water absorption rate (%)
0 5 10 15 20 25 30 10 10 10 10 10 0 0 0 0 0 0 0 -4 -6 0 0 90/10 90/10 90/10 90/10 90/10 90/10 90/10 90/10 90/10 88/12 85/15 90/10 83.70 92.19 90.48 89.91 84.01 91.47 91.61 90.47 83.23 82.77 83.79 90.69 10.13 17.42 19.64 24.11 40.09 41.83 42.29
表1  不同条件的支架孔隙率、吸水率
1 Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, Cheepsunthorn P, Pavasant P, Supaphol P, In vitro biocompatibility of Schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds, Biomacromolecules, 8, 1587(2007)
2 Aihemat, Wang ZB, Zhu L, Application of biodegradable polycaprolactone in medicine, Biomedical Engineering Foreign Medical Sciences, 28(1), 19(2005)
3 Shor L, Güceri S, Wen X, Gandhi M, Sun W, Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro, Biomaterials, 28(35), 5291(2007)
4 Baker SC, Rohman G, Southgate J, Cameron NR, The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering, Biomaterials, 30(7), 1321(2009)
5 Ma T F, Shi T J, Properties, Synthesis and applications of PVP, Applied Chemical Industry, 31(3), 16(2002)
5 (马婷芳, 史铁钧, 聚乙烯吡咯烷酮的性能、合成及应用, 应用化工, 31(3), 16(2002))
6 Chen X B, A?Study?of?Preparation?of?PCL/PVP?Blend?Films?and Their?Properties, Journal?of?Wuyi?University (Natural?Science?Edition), 25(2), 43(2011)
6 (陈向标,PCL/PVP共混膜的制备与性能研究, 五邑大学学报(自然科学版), 25(2), 43(2011))
7 Liu S Q, Xiao X F, Liu R F, Lin Y H, Zhong Z Y, Jiao J J, Fabrication of poly(L-lactic acid) nanofibrous scaffolds by thermally induced phase separation, chemical Journal of Chinese universities, 32(2), 372(2011))
7 (刘淑琼, 肖秀峰, 刘榕芳, 林月红, 钟章裕, 焦简金, 热致相分离制备聚乳酸纳米纤维支架, 高等学校化学学报, 32(2), 372(2011))
8 Liu S Q, Xiao X F, Liu R F, Zhong Z Y, Jiao J J, Fabrication of polycaprolactone nanofibrous scaffolds by thermally induced phase separation, Chemical Industry and Engineering Progress, 30(5), 1059(2011)
8 (刘淑琼, 肖秀峰, 刘榕芳, 钟章裕, 焦简金, 相分离制备聚己内酯纳米纤维支架的工艺探讨, 化工进展, 30(5), 1059(2011))
9 Song C X, Wang P Y, Sun H H, Y J, Cui X M, Shi R W, The in vivo degradation, adsorption and excrction of poly(ε-caprolactone), J Biomed Eng, 17(1), 25(2000)
9 (宋存先, 王彭延, 孙洪范, 施化莲, 杨菁, 崔秀敏, 史瑞文, 聚己内酯在体内的降解、吸收和排泄, 生物医学工程学杂志, 17(1), 25(2000))
10 Cuneyt TA, Synthesis of biomimetic Ca hydroxyapatite powders at 37℃ in synthetic body fluids, Biomaterials, 21, 1429(2000)
11 Woo KM, Jun JH, Chen VJ, Seo JY, Baek JH, Ryoo HM, Kim GS, Somerman MJ, Ma PX, Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization, Biomaterials, 28(2), 335(2007)
12 Hua FJ, Park TG, Lee DS, A facile preparation of highly interconnected macroporous PLGA scafolds by liquid liquid phase separation of a PLGA-dioxane-water ternary system, Polymer, 44(6), 1911(2003)
13 He LM, Zhang YQ, Zeng X, Quan DP, Liao SS, Zeng YS, Lu J, Ramakrishna S, Fabrication and characterization of poly(L-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid-liquid phase separation from a ternary polymer-solvent system, Polymer, 50(16), 4128(2009)
14 Xu F, Wang D W, Chen S F, Wang W H, Zhou C H, Cui F Z, Zhang B, Preliminary study for vascular tissue engineering by electrospinning PLLA/PVP nanofiber films, Journal of Southeast University (Medical Science Edition), 30(3), 391(2011)
14 (徐飞, 王大伟, 陈双峰, 王伟华, 周长辉, 崔福斋, 张彬, 电纺PLLA/PVP纳米纤维膜材料用于血管组织工程的前期研究, 东南大学学报(医学版), 30(3), 391(2011))
15 Yang F, Wolke J G C, Jansen J A, Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering, Chemical Engineering Journal, 137(1), 154(2008)
16 Yamaguchi, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J, Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites, Journal of Biomedical Materials Research, 55(1), 20(2001)
17 Mo L R, Li Y B, Lv G Y, Study on nano-hydroxyapatite crystals synthesized under different conditions, Chemical Research and Application, 18(3), 230(2006)
17 (莫利蓉, 李玉宝, 吕国玉, 不同条件下合成的纳米羟基磷灰石晶体的性能研究, 化学研究与应用, 18(3), 230(2006))
18 Liu Y, Zhong K N, Hu W Y, Influences of Synthetic Conditions on the Characteristics of Hydroxyl-Apatite Synthesised by Sol-gel Method, Materials Science & Engineering, 15(1), 63(1997)
18 (刘羽, 钟康年, 胡文云, 溶胶-凝胶法合成条件与羟基磷灰石特征的关系, 材料科学与工程, 15(1), 63(1997))
19 Huang Z L, Wang D W, Liu Y, Zhang Y, Xu H Y, FT-IR Investigation on Crystal Chemistry of Various CO32- -Substituted Hydroxyapatite Solid Solution, Chinese Journal of Inorganic Chemistry, 18(5), 469(2002)
19 (黄志良, 王大伟, 刘羽, 张昱, 胥焕岩,不同类型的CO32-替换羟基磷灰石固溶体晶体化学FT-IR研究, 无机化学学报, 18(5), 469(2002))
20 Han J M, Li Y B, Liang X J, Comparison of compositional and structural characterizations of synthetic nano-hydroxyapatite and mineral phase from human teet, Jouranl of Functional Materials, 36(7), 1069(2005)
20 (韩纪梅, 李玉宝, 梁新杰, 纳米羟基磷灰石与牙无机质的比较研究, 功能材料, 36(7), 1069(2005))
[1] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[3] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[6] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[7] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[8] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[9] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[10] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[11] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[12] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[13] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[14] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[15] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.