Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (2): 189-196    
  研究报告 本期目录 | 过刊浏览 |
纳米Zr粒子改性环氧涂层的耐腐蚀性能*
梁永纯1 赵书彦2 聂铭1 刘福春2 林介东1 韩恩厚2
1. 广东电网公司电力科学研究院 广州 510080
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Investigation of Corrosion Resistance of Epoxy Coatings Modified with Zirconium Nanoparticles
LIANG Yongchun1 ZHAO Shuyan2 NIE Ming1 LIU Fuchun2**
LIN Jiedong1 HAN En-Hou2
1.The Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 510080;
2. State Key Laboratory for Corrosion and protection, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016
引用本文:

梁永纯, 赵书彦, 聂铭, 刘福春, 林介东, 韩恩厚. 纳米Zr粒子改性环氧涂层的耐腐蚀性能*[J]. 材料研究学报, 2013, 27(2): 189-196.
LIANG Yongchun, ZHAO Shuyan, NIE Ming, LIU Fuchun, LIN Jiedong, HAN En-Hou. Investigation of Corrosion Resistance of Epoxy Coatings Modified with Zirconium Nanoparticles[J]. Chinese Journal of Materials Research, 2013, 27(2): 189-196.

全文: PDF(4484 KB)  
摘要: 摘要 使用纳米Zr粒子和环氧树脂制备出纳米复合环氧涂料, 用透射电镜(TEM)、X射线衍射光谱(XRD)对纳米Zr粒子进行了表征, 并测试了不同含量纳米Zr粒子涂层力学性能。根据盐雾试验和电化学阻抗谱(EIS)试验结果研究了纳米Zr粒子对涂层耐腐蚀性能的影响。结果表明, 在10%纳米Zr粒子涂层中水的扩散系数为6.0×10-6 cm2/s, 比其它涂层降低了一个数量级。适量的惰性纳米Zr粒子在涂层中均匀分散产生的物理屏蔽作用, 提高了涂层的耐腐蚀性能。
关键词 材料失效与保护环氧涂料纳米金属电力杆塔海洋环境    
Abstract: Nanocomposite epoxy coatings were prepared with Zr nanoparticles and resin. Zr nanoparticles was characterized using transmission electron microscopy (TEM) and X-ray diffraction spectroscopy (XRD). Measurements of mechanical properties of coatings with different loading of nanoparticles were carried out. Effects of Zr nanoparticles on the coating corrosion resistance were investigated using salt spray tests and electrochemical impedance spectroscopy (EIS). Results show that the diffusion coefficient of water in the coating with 10% Zr nanoparticles is 6.0×10-6 cm2/s, and decreases an order of magnitude than that of other coatings. Zr nanoparticles with appropriate loading dispersed homogeously in the coatings play a role of physical barrier, thus the corrosion resistance of the coatings is improved.
Key wordsmaterials failure and protection    epoxy coatings    nanometer metal    power transmission poles and towers    marine environment
    
ZTFLH:  TG174  
1 XUAN Zhaolong, YI Jianzheng, DU Shiguo, Modification and additive of epoxy resins used in anticorrosion coatings, Corrosion Science and Protection Technology, 12(4), 221(2000)
(宣兆龙, 易建政, 杜仕国, 防腐涂料用环氧树脂的改性及添加剂, 腐蚀科学与防护技术, 12(4), 221(2000))
2 S. Radhakrishnan, C. R. Siju, D. Mahanta, S. Patil, G. Madras, Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings, Electrochimica Acta, 54(4), 1249(2009)
3 H. W. Shi, F. C. Liu, L. H. Yang, E. H. Han, Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2, Progress in Organic Coatings, 62(4), 359(2008)
4 K. Dhoke Shailesh, A. S. Khanna, T. Jai Mangal Sinha, Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings, Progress in Organic Coatings, 64(4), 371(2009)
5 S. B. Li, H. Y. Ru, J. Q. Gao, Z. H. Jin, Mullite coating on recrytallized silicon carbide and its cycling oxidation Behavior, China’s Refractories, 15(2), 22(2006)
6 LI Haoliang, LIU Jingfu, LI Zhichao, The effect of filler on characteristic of the epoxy adhesive coating, Journal of Liaoning Technical University, 18(4), 426(1999)
(李赫亮, 刘敬福, 李智超, 碳化硼对环氧胶粘涂层机械性能的影响, 辽宁工程技术大学, 18(4), 426(1999))
7 M. R. Bagherzadeh, F. Mahdavi, Preparation of epoxy-clay nanocomposite and investigation on its anticorrosive behavior in epoxy coating, Progress in Organic Coatings, 60(2), 117(2007)
8 T. T. Xuan Hang, T. A. Truc, T. H. Nam, V. K. Oanh, J. B. Jorcin, N. Pébère, Corrosion protection of carbon steel by an epoxy resin containing organically modified clay, Surface & Coatings Technology, 201(16-17), 7408(2007)
9 S. Y. Zhang, Y. F. Ding, S. J. Li, X. W. Luo, W. F. Zhou, Effect of polymeric structure on the corrosion protection of epoxy coatings, Corrosion Science, 44(4), 861(2002)
10 H. Marchebois, S. Joiret, C. Savall, J. Bernard, S. Touzain, Characterization of zinc-rich particle coatings by EIS and Raman spectroscopy, Surface and Coatings Technology, 157(2-3), 151(2002)
11 A. Meroufel, C. Deslouis, S. Touzain, Electrochemical and anticorrosion performances of zinc-rich and polyaniline particle coatings, Electrochimica Acta, 53(5), 2331(2008)
12 S. Shreepathi, P. Bajaj, B. P. Mallik, Electrochemical impedance spectroscopy investigations of epoxy zinc-rich coatings: Role of Zn content on corrosion protection mechanism, Electrochimica Acta, 55(18), 5129(2010)
13 ZHANG Wei, HE Liping, TANG Shaoqiu, LAI Chen, Study on corrosion prevention of zinc-rich epoxy coatings, Coating Industrial, 32(12), 4(2002)
(张 微, 何莉萍, 唐绍裘, 赖 琛, 富锌环氧涂层的防腐蚀研究, 涂料工业, 32(12), 4(2002))
14 S. González, F. Cáceres, V. Fox, R. M. Souto, Resistance of metallic substrates protected by an organic coating containing aluminum particle, Progress in Organic Coating, 46(4), 317(2003)
15 X. Z. Zhang, F. H. Wang, Y. L. Du, Effect of nano-sized titanium particle addition on corrosion performance of epoxy coatings, Surface and Coatings Technology, 201(16-17), 7241(2007)
16 C. Perez, A. Collazo, M. Izquierdo, P. Merino, X. R. Novoa, Characterization of the barrier properties of different paint systems (Part1.Experiment set-up and ideal Fickian diffusion), Progress in Organic Coating, 36(2), 1999(102)
17 F. Bellucci, L. Nicodemo, Water transport in organic coating, Corrosion, 46(5), 1993(235)
18 Hu Jiming, Zhang jianqing, cao chuman, Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy, Progress in Organic Coatings, 46(5), 2003(273)
19 LIU Bin, LI Ying, LIN Haichao, CAO Chunan, Effect of PVC on the Diffusing Behavior of Water through Alkyd Coatings, Acta Physico-Chimica Sinica, 17(3), 2001(241)
(刘 斌, 李 瑛, 林海潮, 曹楚南, 颜料体积浓度对水在醇酸涂层中传输行为的影响, 物理化学学报, 17(3), 2001(241))
20 LIU Bin, Electrochemical behavior of organic coatings/metal system, Doctoral Dissertation, Institute of Metal Research, Chinese Academy of Sciences(2003)
(刘 斌, 有机涂层、基底金属体系腐蚀电化学行为研究, 博士学位论文, 中国科学院金属研究所(2003))
21 YANG Lihong, The effect of adding Nano-pigment on the property of organic coatings, Doctoral Dissertation, Institute of Metal Research, Chinese Academy of Sciences(2005)
(杨立红, 添加纳米颜料对有机涂层防护性能的影响研究, 博士学位论文, 中国科学院金属研究所(2005))
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.