Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (2): 197-201    
  研究报告 本期目录 | 过刊浏览 |
搅拌摩擦加工对原位TiB2/7075复合材料性能的影响
许辰苏1 吴洁琼2 章鹏1 陈科2 李险峰*1 王浩伟1
1. 上海交通大学 金属基复合材料国家重点实验室 上海 200240
2. 上海交通大学 材料科学与工程学院 上海 200240
Effect of Friction Stir Processing on Properties of in situ
TiB2/7075 Composite
XU Chensu1 WU Jieqiong2 ZHANG Peng1 CHEN Ke2 LI Xianfeng1* WANG Haowei1
1. The State Key Laboratory of Metal Matrix Composites of Shanghai Jiaotong University,
Shanghai 20024;
2. School of Matierial Science and Engineering, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240
引用本文:

许辰苏, 吴洁琼, 章鹏, 陈科, 李险峰, 王浩伟. 搅拌摩擦加工对原位TiB2/7075复合材料性能的影响[J]. 材料研究学报, 2013, 27(2): 197-201.
XU Chensu, WU Jieqiong, ZHANG Peng, CHEN Ke, LI Xianfeng, WANG Haowei. Effect of Friction Stir Processing on Properties of in situ
TiB2/7075 Composite[J]. Chinese Journal of Materials Research, 2013, 27(2): 197-201.

全文: PDF(4437 KB)  
摘要: 摘 要 用搅拌摩擦加工法处理原位自生TiB2/7075复合材料, 分析了经过不同加工道次的复合材料的微观结构、拉伸性能。结果表明: 经过搅拌摩擦加工, 搅拌区内的复合材料晶粒细小, 颗粒大团聚被打散, 颗粒在微米尺度分布更为均匀, 同时消除了在制备过程中产生的浇铸缺陷。在搅拌区内复合材料的晶粒直径由45 μm细化到2 μm。与一道次加工相比, 经过四道次搅拌摩擦加工的复合材料, 其微观组织形貌更为均匀。缺陷的消除以及微观组织的改变, 使复合材料搅拌区的拉伸性能得到显著提高, 四道次加工的材料断裂强度为母材的1.3倍, 而延伸率则为母材的8倍。
关键词 复合材料搅拌摩擦加工原位自生铝基复合材料颗粒团聚    
Abstract: In situ aluminum alloy matrix composites were processed by Friction Stir Processing. The microstructure and tensile properties of composites after different passes FSP were analyzed. The results show that, in the stir zone, the composites have finer grains and large clustering of particles have been broken up, which leads to a more homogeneous particles distribution. The casting defects produced in preparation process are also eliminated during FSP. The grain size changes from 45 μm to 2 μm. Comparing to 1-pass FSP, after 4-pass FSP, composites have more homogeneous microstructure. Due to the changes of microstructure and the elimination of defects, the tensile properties of stir zone have been significantly improved. The tensile strength of the composite is 1.3 times of base material and the elongation is 8 times of base material.
Key wordscomposites    friction stir processing    in situ    MMCs    particles clustering
    
ZTFLH:  TB333  
1 S. C. Tjong, Z. Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering, 29, 49(2000)
2 CHEN Dong, LE Yongkang, BAI Liang, Mechanical properties and microstructure of in situ TiB2-7075 composites, Chinese Journal of Aeronautic, 19, 66(2006)
3 Y. M. Youssef, R. J. Dashwood, P. D. Lee, Effect of clustering on particle pushing and solidification behavior in TiB2 reinforced aluminium PMMCs, Composites: Part A, 36, 747(2005)
4 I. G. Watson, M. F. Forster, P. D. Lee, R. J. Dashwood, R. W. Hamilton, A. Chirazi, Investigation of the clustering behaviour of titanium diboride particles in aluminium, Composites: Part A, 36, 1177(2005)
5 S. J. Hong, H. M. Kim, D. Huh, B. S. Chun, C. Suryanarayana, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Mater Sci Eng A, 347, 198(2003)
6 Z. Y. Ma, Friction Stir Processing Technology: A Review, Metallurgical and Materials Transactions A, 39(3), 642(2008)
7 R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R, 50, 1(2005)
8 LIU Fengchao, MA Zongyi, Effect of friction stir processing on the microstructure of as-cast 7075 aluminum alloy, Acta Metallurgica Sinica, 44(3), 319(2008)
(刘峰超, 马宗义, 搅拌摩擦加工对铸态7075铝合金显微组织的影响, 金属学报, 44(3), 319(2008))
9 ZHANG Zhao, ZHANG Hongwu, Effect of process parameters on quality of firction stir weld, Chinese Journal of Materials Research, 20(5), 504(2006)
(张昭, 张洪武, 焊接参数对搅拌摩擦焊接质量的影响, 材料研究学报, 20(5), 504(2006))
10 Devinder Yadav, Ranjit Bauri, Effect of friction stir processing on microstructure and mechanical properties of Aluminium, Materials Science and Engineering A, 539, 85(2012)
11 Mohsen Barmouz, Mohammad Kazem Besharati Givi, Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior, Composites Part A: Applied Science and Manufacturing, 42(10), 1145(2011)
12 L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro, L. M. Volpone, Friction stir welding of an AA6061/Al2O3/20p reinforced alloy, Composites Science and Technology, 66, 363(2006)
13 W. Woo, H. Choo, D. W. Brown, Texture analysis of a friction stir processed 6061-T6 aluminum alloy using neutron diffraction, Acta Materialia, 54, 3871(2006)
14 U. F. H. R. Suhuddin, S. Mironov, Y. S. Sato, H. Kokawa, Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets, Materials Science and Engineering A, 527, 1962(2010)
15 C. G. Rhodes, M. W. Mahoney, W. H. Bingel, M. Calabrese, Fine-grain evolution in friction-stir processed 7050 aluminum, Scripta Materialia, 48, 1451(2003)
16 FENG Xiuli, LIU Huijie, Sudarsanam Suresh Babub, Effect of grain size refinement and precipitation reactions on strengthening in friction stir processed Al-Cu alloys, Scripta Materialia, 65, 1057(2011)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.