Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 221-231    DOI: 10.11901/1005.3093.2023.119
  研究论文 本期目录 | 过刊浏览 |
激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为
李飞阳1, 刘志红1, 乔岩欣1, 杨兰兰1, 卢道华2, 汤雁冰2()
1.江苏科技大学材料科学与工程学院 镇江 212003
2.江苏科技大学海洋装备研究院 镇江 212003
Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution
LI Feiyang1, LIU Zhihong1, QIAO Yanxin1, YANG Lanlan1, LU Daohua2, TANG Yanbing2()
1.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
Feiyang LI, Zhihong LIU, Yanxin QIAO, Lanlan YANG, Daohua LU, Yanbing TANG. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution[J]. Chinese Journal of Materials Research, 2024, 38(3): 221-231.

全文: PDF(12250 KB)   HTML
摘要: 

对激光选区熔化316L不锈钢(SLM 316L)进行开路电位、电化学阻抗、动电位极化、恒电位极化、暂态电流-时间测量以及Mott-Schottky、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和电子背散射衍射(EBSD)等表征,与商用轧制316L不锈钢(R 316L)对比研究其在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液环境中的钝化行为。结果表明:这两种钢钝化膜的形核机制均为连续形核,但是SLM 316L不锈钢的晶粒更小、晶界密度更高、钝化膜生长得更快。SLM 316L不锈钢发生过钝化溶解但是不发生点蚀,而R316L不锈钢发生点蚀。SLM 316L不锈钢的耐蚀性能更优,因为其为均一的奥氏体相且有大量的小角度晶界;同时,表面生成的钝化膜中的O2-/OH-比值更低、载流子浓度更低、Cr2O3的含量更高和NiO含量更低,对钝化膜的保护效果更好,使其具有优异的耐点蚀性能。

关键词 材料失效与保护钝化行为电化学测试316L不锈钢    
Abstract

The open-circuit potential, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostats polarization, current-time transient measurements, Mott-Schottky analysis, X-ray photoelectron spectroscopy (XPS), Electron Back-Scattered Diffraction(EBSD)methods were used to investigate the passivation behavior of 316L stainless steel fabricated by laser selective melted (SLM 316L) in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution. The results were compared with commercial rolled 316L stainless steel (R 316L). The results showed that the nucleation of passivation film follows continuous mechanism for the both stainless steel. However, the SLM 316L stainless steel has smaller grain size and higher grain boundary density than those of R 316L stainless steel. Therefore, the grow rate of passivation film is fast. The SLM 316L stainless steel took place transpassivation dissolution, while R 316L stainless steel took place pitting corrosion. The SLM 316L stainless steel has better corrosion resistance. The main reasons are the SLM 316L stainless steel has much more low angle grain boundaries without ferrite. Moreover, the passivation film of SLM 316L stainless steel has lower carrier density, lower ratio of O2-/OH-, lower content of NiO and higher content of Cr2O3 compared with R 316L stainless steel.

Key wordsmaterials failure and protection    passivation behavior    electrochemical tests    316L stainless steel
收稿日期: 2023-02-06     
ZTFLH:  TG172.5  
基金资助:国家重点研发计划(2018YFC0309100);江苏省重点研发计划重点项目(BE2022062)
通讯作者: 汤雁冰,正高级工程师,tyb2213@just.edu.cn,研究方向为材料腐蚀与防护及腐蚀监测
Corresponding author: TANG Yanbing, Tel:(0511)88896820, E-mail: tyb2213@just.edu.cn
作者简介: 李飞阳,男,1992年生,硕士生
SiMnPSNiCrCMoFe
SLM 316L0.250.710.0070.00610.5816.410.0132.67Bal.
R 316L0.4471.1670.0310.00110.16216.8210.0192.102Bal.
表1  SLM 316L和R 316L的化学成分
图1  SLM 316L和R 316L的XRD谱
图2  SLM 316L和R 316L的金相组织
图3  SLM 316L和R 316L的SEM图像
图4  两种不锈钢材料的EBSD分析
图5  SLM 316L不锈钢和R 316L不锈钢的开路电位
图6  SLM 316L和R 316L在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的动电位极化曲线
图7  SLM 316L和R 316L在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的电化学阻抗谱(EIS)
图8  R 316L不锈钢和SLM 316L不锈钢的EIS等效电路图
Rs / Ω·cm2CPE1 / F·cm-2nR1 / Ω·cm2C / F·cm-2R2 / Ω·cm2
SLM 316L12.894.21 × 10-50.876.31 × 104-1.97 × 10-52.33 × 105
R 316L13.674.53 × 10-50.865.88 × 104-2.44 × 10-51.71 × 105
表2  SLM 316L和R 316L的等效电路参数
图9  SLM 316L和R 316L在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的暂态电流随时间的变化
图10  SLM 316L不锈钢和R 316L不锈钢的暂态实验曲线与标准形核的对比
图11  SLM 316L不锈钢和R 316L不锈钢在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的Mott-Schottky曲线
图12  两种不锈钢在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中形成的钝化膜的载流子密度
图13  两种不锈钢的电流密度随时间变化的双对数曲线
图14  两种不锈钢表面钝化膜的XPS分析
图15  两种不锈钢表面钝化膜成分的深度分布
1 Bacciaglla A, Ceruti A, Liverani A, et al. Towards large parts manufacturing in additive technologies for aerospace and automotive applications [J]. Procedia Computer Science, 2022, 200: 1113
doi: 10.1016/j.procs.2022.01.311
2 Melenka G W, Cheung B K O, Schofield J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3d printed structures [J]. Compos. Struct., 2016, 153: 866
doi: 10.1016/j.compstruct.2016.07.018
3 Daminabo S C, Goel S, Grammatikos S A, et al. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems [J]. Mater. Today., Chem., 2020, 16: 100248
4 Guo Q, Zhao C, Qu M, et al. In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process [J]. Addit. Manuf., 2019, 28: 600
5 Li R, Niu P, Yuan T. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloy. Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
6 Lodhi M J K, Iams A D, Sikora E, et al. Microstructural features contributing to macroscopic corrosion: The role of oxide inclusions on the corrosion properties of additively manufactured 316L stainless steel [J]. Corros. Sci., 2022, 203: 110354
doi: 10.1016/j.corsci.2022.110354
7 Zhang Z, Yuan X, Zhao Z, et al. Electrochemical noise comparative study of pitting corrosion of 316L stainless steel fabricated by selective laser melting and wrought [J]. J. Electroanal. Chem., 2021, 894: 115351
doi: 10.1016/j.jelechem.2021.115351
8 Zhao C L, Bai Y, Zhang Y, et al. Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel [J]. Mater. Design., 2021, 209: 109999
9 Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
10 Laleh M, Hughes A E, Xu W, et al. Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting [J]. Corros. Sci., 2019, 155: 67
doi: 10.1016/j.corsci.2019.04.028
11 Trelewicz J R, Halada G P, Donaldson O K, et al. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel [J]. Jom-Us., 2016, 68(7): 764
12 Geenen K, Roettger A, Theisen W, et al. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting [J]. Mater. Corros., 2017, 68(7): 764
13 De Souza Silva E M F, Da Fonseca G S, Ferreira E A, et al. Microstructural and selective dissolution analysis of 316L austenitic stainless steel [J]. J. Mater. Res. Technol. J, 2021, 15: 4317
doi: 10.1016/j.jmrt.2021.10.009
14 Ha H Y, Park C J, Kwon H S, et al. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11%Cr ferritic stainless steel examined by micro-droplet cell [J]. Corros. Sci., 2007, 49(3): 1266
doi: 10.1016/j.corsci.2006.08.017
15 Qu H, Li J, Zhang F, et al. Anisotropic cellular structure and texture microstructure of 316L stainless steel fabricated by selective laser melting via rotation scanning strategy [J]. Mater. Design., 2022, 215: 110454
16 Depionoy S. Influence of solidification conditions on chemical heterogeneities and dislocations patterning in additively manufactured 316L stainless steel [J]. Materialia, 2022, 24: 101472
doi: 10.1016/j.mtla.2022.101472
17 Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
18 El Shams, Din A M, Paul N J, et al. Oxide film thickening on the surface of metals in aqueous solutions: A critique of the theory of open-circuit potential transients [J]. Thin Solid Films, 1990, 189(2): 205
doi: 10.1016/0040-6090(90)90449-N
19 Fattah Alhosseini A, Saatchi A, Golozar M A, et al. The transpassive dissolution mechanism of 316L stainless steel [J], Electrochim. Acta., 2009, 54(13): 3645
doi: 10.1016/j.electacta.2009.01.040
20 Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
doi: 10.1016/j.corsci.2011.12.022
21 Hills G J, Peter L M, Scharifker B R, et al. The nucleation and growth of two-dimensional anodic films under galvanostatic conditions [J], J. Electroanal. Chem., 1981, 124(1): 247
doi: 10.1016/S0022-0728(81)80302-6
22 Gai X, Bai Y, Li J, et al. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting [J]. Corros. Sci., 2018, 145: 80
doi: 10.1016/j.corsci.2018.09.010
23 Li T, Liu L, Zhang B, et al. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles [J]. Corros. Sci., 2014, 85: 331
doi: 10.1016/j.corsci.2014.04.039
24 Pan C, Liu L, Li Y, et al. Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques [J]. Electrochim. Acta., 2011, 56: 7740
doi: 10.1016/j.electacta.2011.05.106
25 Shi T, Sun J Q, Wang X W, et al. Effect of trace water in ammonia on breaking passive film of stainless steel during gas nitriding [J]. Vacuum., 2022, 202: 111216
doi: 10.1016/j.vacuum.2022.111216
26 Hakiki N E, Belo M D C, Simoes A M P, et al. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145(11): 3821
doi: 10.1149/1.1838880
27 Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46(6): 1479
doi: 10.1016/j.corsci.2003.09.022
28 Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting [J]. Corros. Sci., 2021, 179:109146
doi: 10.1016/j.corsci.2020.109146
29 Azumi K, Ohstuka T, Sato N, et al. Mott-Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions [J]. J. Electrochem. Soc., 1987, 134(6):1352
doi: 10.1149/1.2100672
30 Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci. 2005, 47(3): 581
doi: 10.1016/j.corsci.2004.07.002
31 Liu L, Li Y, Wang F, et al. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta., 2007, 52(7): 2392
doi: 10.1016/j.electacta.2006.08.070
32 Subba Rao R V, Wolff U, Baunack S, et al. Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy [J]. Corros. Sci., 2003, 45(4): 817
doi: 10.1016/S0010-938X(02)00131-2
33 Gebert A, Wolff U, John A, et al. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes [J]. Mat. Sci. Eng A-Struct., 2001, 299(1): 125
doi: 10.1016/S0921-5093(00)01401-5
34 Yue X, Yang Z, Huang L, et al. Passivation characteristics of ultra-thin 316L foil in NaCl solutions [J]. J. Mater. Sci. Technol., 2022, 127:192
doi: 10.1016/j.jmst.2022.01.043
35 Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50(3): 780
doi: 10.1016/j.corsci.2007.11.004
36 Luo H, Su H, Li B, et al. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment [J]. Appl. Surf. Sci., 2018, 439: 232
doi: 10.1016/j.apsusc.2017.12.243
37 Cheng H, Luo H, Wang X, et al. Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment [J]. Mater. Chem. Phys., 2022, 292: 126837
doi: 10.1016/j.matchemphys.2022.126837
38 Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49(5): 2198
doi: 10.1016/j.corsci.2006.10.032
39 Li J, Wang Q, Yang Y, et al. Enhancing pitting corrosion resistance of severely cold-worked high nitrogen austenitic stainless steel by nitric acid passivation [J]. J. Electrochem. Soc., 2019, 166(13): 365
40 Lee J B, Yoon S I. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels [J]. Mater. Chem. Phys., 2010, 122(1): 194
doi: 10.1016/j.matchemphys.2010.02.033
41 Liu L, Li Y, Wang F. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl [J]. Electrochim. Acta., 2007, 52(25): 7193
doi: 10.1016/j.electacta.2007.05.043
42 Abreu C M, Cristobal M J, Losada R, et al. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels [J]. Electrochim. Acta., 2006, 51(15): 2991
doi: 10.1016/j.electacta.2005.08.033
[1] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[2] 刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
[3] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[4] 冯枫, 杨冰, 陈东东, 王明猛, 肖守讷, 阳光武, 朱涛. 缺陷对激光选区熔化316L不锈钢疲劳性能的影响[J]. 材料研究学报, 2023, 37(12): 907-914.
[5] 胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
[6] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[7] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[8] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[9] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[10] 金丹, 韩高枫, 龙浩跃, 金铠. 316L不锈钢非比例路径疲劳失效的微观机理[J]. 材料研究学报, 2022, 36(11): 845-849.
[11] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[12] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[13] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[14] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[15] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.