Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 907-914    DOI: 10.11901/1005.3093.2022.634
  研究论文 本期目录 | 过刊浏览 |
缺陷对激光选区熔化316L不锈钢疲劳性能的影响
冯枫, 杨冰(), 陈东东, 王明猛, 肖守讷, 阳光武, 朱涛
西南交通大学 牵引动力国家重点实验室 成都 610031
Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel
FENG Feng, YANG Bing(), CHEN Dongdong, WANG Mingmeng, XIAO Shoune, YANG Guangwu, ZHU Tao
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
引用本文:

冯枫, 杨冰, 陈东东, 王明猛, 肖守讷, 阳光武, 朱涛. 缺陷对激光选区熔化316L不锈钢疲劳性能的影响[J]. 材料研究学报, 2023, 37(12): 907-914.
Feng FENG, Bing YANG, Dongdong CHEN, Mingmeng WANG, Shoune XIAO, Guangwu YANG, Tao ZHU. Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel[J]. Chinese Journal of Materials Research, 2023, 37(12): 907-914.

全文: PDF(7972 KB)   HTML
摘要: 

对激光选区熔化的316L不锈钢进行单调拉伸和疲劳实验,根据得到的参考S-N曲线、参考疲劳极限和对缺陷的评估研究未熔合缺陷(LOF缺陷)对疲劳行为的影响,根据断口观测分析了缺陷大小与疲劳极限之间的关系并统计分析了试样切片的缺陷极值,为预测SLM 316L不锈钢的最大缺陷尺寸和疲劳极限提供了偏安全的评估方法。

关键词 金属材料疲劳缺陷316L不锈钢激光选区熔化    
Abstract

The metal materials manufactured by laser selective melting technology have better mechanical properties than traditional casting materials and are suitable for the manufacture of various complex parts. However, the defects introduced in the process implementation are the main factors restricting the fatigue properties. Therefore, the mechanical performance of the SLM prepared 316L stainless steels was assessed. The results show that the tensile strength, yield strength, and elongation of 316L stainless steel formed by laser selective melting process are 816.8, 720.4 MPa, and 33.83%, respectively, which are much higher than that of the forged parts. However, it is found that the measured data of fatigue life are much dispersed due to the initiation of cracks on defects in the surface and/or near-surface during fatigue testing. The reference S-N curve of the material was obtained by the maximum likelihood method, and the fatigue limit was predicted to be 259 MPa. At the same time, combined with the √area parameter and the extreme statistical method, the maximum defect and fatigue limit of the material was predicted. The error between the fatigue limit prediction results and the test results is less than 10%, which provides a partial safety estimation method for the safety evaluation of the material.

Key wordsmetallic materials    fatigue    defect    316L stainless steel    selective laser melting
收稿日期: 2022-11-29     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(52375159);四川省国际科技创新合作项目(2022YFH0075);牵引动力国家重点实验室自主课题(2022TPL-T03)
通讯作者: 杨 冰,研究员,yb@swjtu.edu.cn,研究方向为车辆结构强度及材料疲劳与断裂
Corresponding author: YANG Bing, Tel: 18080053540, E-mail: yb@swjtu.edu.cn
作者简介: 冯 枫,男,1997年生,硕士生
图1  316L不锈钢粉体形貌的SEM照片
图2  INSTRON E10000电子拉扭试验机
图3  各种试样的尺寸和SLM成型试样
图4  SLM 316L不锈钢不同方向的金相组织
图5  SLM 316L不锈钢不同方向的扫描电镜照片
Specimen

Tensile stength

/ MPa

Yield strength

/ MPa

Elongation

/ %

SLM 316L816.8720.433.83
Cast 316L [24]54826852
表1  激光选区熔化316L不锈钢的力学性能
图6  SLM 316L不锈钢的参考S-N曲线
图7  SLM 316L的疲劳断口
图8  在应力幅相同的条件下两种典型试样的疲劳源区
图9  不规则形状缺陷的有效尺寸[29]
图10  试样切片的局部光学显微镜图像
图11  试样切片缺陷极值的统计分析
1 Roschli A, Gaul K T, Boulger A M, et al. Designing for big area additive manufacturing [J]. Addit. Manuf., 2019, 25: 275
doi: 10.1016/j.addma.2018.11.006
2 Liu Z F, Huang Y D, Yang X, et al. Preparation of graphene/Ni-Cu alloy composite on Ni-Cu alloy template made by selective laser melting [J]. Chin. J. Mater. Res., 2021, 35(1): 1
2 刘主峰, 黄耀东, 杨 潇 等. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 [J]. 材料研究学报, 2021, 35(1): 1
3 Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials [J]. Mater. Sci. Eng., 2021, 145R: 100596
4 Dong Z H, Kang H W, Xie Y J, et al. Effect of Cr-content on microstructure of 12CrNi2 alloy steel prepared by laser additive manufacturing [J]. Chin. J. Mater. Res., 2018, 32(11): 827
4 董志宏, 亢红伟, 谢玉江 等. Cr含量对激光增材制造12CrNi2合金钢的组织结构的影响 [J]. 材料研究学报, 2018, 32(11): 827
5 Tucho W M, Lysne V H, Austbø H, et al. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L [J]. J. Alloys Compd., 2018, 740: 910
doi: 10.1016/j.jallcom.2018.01.098
6 Zong X W, Gao Q, Zhou H Z, et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel [J]. Chin. J. Lasers, 2019, 46: 0502003
6 宗学文, 高 倩, 周宏志 等. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响 [J]. 中国激光, 2019, 46: 0502003
7 Charmi A, Falkenberg R, Ávila L, et al. Mechanical anisotropy of additively manufactured stainless steel 316L: an experimental and numerical study [J]. Mater. Sci. Eng., 2021, 799A: 140154
8 Deev A A, Kuznetcov P A, Petrov S N. Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method [J]. Phys. Procedia, 2016, 83: 789
doi: 10.1016/j.phpro.2016.08.081
9 Roth C C, Tancogne-Dejean T, Mohr D. Plasticity and fracture of cast and SLM AlSi10Mg: high-throughput testing and modeling [J]. Addit. Manuf., 2021, 43: 101998
10 Gupta M K, Singla A K, Ji H S, et al. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy [J]. J. Mater. Res. Technol., 2020, 9(5): 9506
doi: 10.1016/j.jmrt.2020.06.090
11 Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
doi: 10.11901/1005.3093.2021.105
11 刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
12 Agius D, Kourousis K I, Wallbrink C, et al. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation [J]. Mater. Sci. Eng., 2017, 701A: 85
13 Qin F, Shi Q, Liu X, et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melted 17-4PH stainless steel [J]. Chin. J. Mater. Res., 2021, 35(8): 606
doi: 10.11901/1005.3093.2020.553
13 秦 奉, 施 麒, 刘 辛 等. 热处理对选区激光熔化17-4PH不锈钢力学性能的影响 [J]. 材料研究学报, 2021, 35(8): 606
14 Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54(12): 1833
doi: 10.11900/0412.1961.2018.00153
14 张亚娟, 王海滨, 宋晓艳 等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54(12): 1833
doi: 10.11900/0412.1961.2018.00153
15 Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
16 Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
16 余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
17 Tascioglu E, Karabulut Y, Kaynak Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2020, 107(5-6): 1947
doi: 10.1007/s00170-020-04972-0
18 Liverani E, Lutey A H A, Ascari A, et al. The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM) [J]. Int. J. Adv. Manuf. Technol., 2020, 107(1-2): 109
doi: 10.1007/s00170-020-05072-9
19 Smith T R, Sugar J D, Schoenung J M, et al. Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel [J]. Mater. Sci. Eng., 2019, 765A: 138268
20 Kumar P, Jayaraj R, Suryawanshi J, et al. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta Mater., 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
21 Kale A B, Singh J, Kim B K, et al. Effect of initial microstructure on the deformation heterogeneities of 316L stainless steels fabricated by selective laser melting processing [J]. J. Mater. Res. Technol., 2020, 9(4): 8867
doi: 10.1016/j.jmrt.2020.06.015
22 Dryepondt S, Nandwana P, Fernandez-Zelaia P, et al. Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion [J]. Addit. Manuf., 2021, 37: 101723
23 Song Y N, Sun Q D, Guo K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, 793A: 139879
24 Meng Q, La P Q, Li H, et al. Influence of Al content on microstructure and properties of casting 316L stainless steel [J]. Hot Work. Technol., 2016, 45(10): 64
24 孟 倩, 喇培清, 李 恒 等. 铝含量对铸造316L不锈钢组织和性能的影响 [J]. 热加工工艺, 2016, 45(10): 64
25 Cheng L Y, Zhu X G, Liu Z W, et al. Effect of heat treatment on microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting [J]. Trans. Mater. Heat Treat., 2020, 41(7): 80
25 程灵钰, 朱小刚, 刘正武 等. 热处理对激光选区熔化成形316L不锈钢组织和力学性能的影响 [J]. 材料热处理学报, 2020, 41(7): 80
doi: 10.13289/j.issn.1009-6264.2020-0068
26 Ling J, Pan J. A maximum likelihood method for estimating P-S-N curves [J]. Int. J. Fatigue, 1997, 19(5): 415
doi: 10.1016/S0142-1123(97)00037-6
27 Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes [J]. Inter. J. Fatigue, 2017, 94: 178
doi: 10.1016/j.ijfatigue.2016.06.020
28 Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, 598A: 327
29 Murakami Y. Material defects as the basis of fatigue design [J]. Int. J. Fatigue, 2012, 41: 2
doi: 10.1016/j.ijfatigue.2011.12.001
30 Romano S, Brandão A, Gumpinger J, et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements [J]. Mater. Des., 2017, 131: 32
doi: 10.1016/j.matdes.2017.05.091
31 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
doi: 10.1016/0142-1123(94)90001-9
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.