|
|
缺陷对激光选区熔化316L不锈钢疲劳性能的影响 |
冯枫, 杨冰( ), 陈东东, 王明猛, 肖守讷, 阳光武, 朱涛 |
西南交通大学 牵引动力国家重点实验室 成都 610031 |
|
Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel |
FENG Feng, YANG Bing( ), CHEN Dongdong, WANG Mingmeng, XIAO Shoune, YANG Guangwu, ZHU Tao |
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China |
引用本文:
冯枫, 杨冰, 陈东东, 王明猛, 肖守讷, 阳光武, 朱涛. 缺陷对激光选区熔化316L不锈钢疲劳性能的影响[J]. 材料研究学报, 2023, 37(12): 907-914.
Feng FENG,
Bing YANG,
Dongdong CHEN,
Mingmeng WANG,
Shoune XIAO,
Guangwu YANG,
Tao ZHU.
Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel[J]. Chinese Journal of Materials Research, 2023, 37(12): 907-914.
1 |
Roschli A, Gaul K T, Boulger A M, et al. Designing for big area additive manufacturing [J]. Addit. Manuf., 2019, 25: 275
doi: 10.1016/j.addma.2018.11.006
|
2 |
Liu Z F, Huang Y D, Yang X, et al. Preparation of graphene/Ni-Cu alloy composite on Ni-Cu alloy template made by selective laser melting [J]. Chin. J. Mater. Res., 2021, 35(1): 1
|
2 |
刘主峰, 黄耀东, 杨 潇 等. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 [J]. 材料研究学报, 2021, 35(1): 1
|
3 |
Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials [J]. Mater. Sci. Eng., 2021, 145R: 100596
|
4 |
Dong Z H, Kang H W, Xie Y J, et al. Effect of Cr-content on microstructure of 12CrNi2 alloy steel prepared by laser additive manufacturing [J]. Chin. J. Mater. Res., 2018, 32(11): 827
|
4 |
董志宏, 亢红伟, 谢玉江 等. Cr含量对激光增材制造12CrNi2合金钢的组织结构的影响 [J]. 材料研究学报, 2018, 32(11): 827
|
5 |
Tucho W M, Lysne V H, Austbø H, et al. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L [J]. J. Alloys Compd., 2018, 740: 910
doi: 10.1016/j.jallcom.2018.01.098
|
6 |
Zong X W, Gao Q, Zhou H Z, et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel [J]. Chin. J. Lasers, 2019, 46: 0502003
|
6 |
宗学文, 高 倩, 周宏志 等. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响 [J]. 中国激光, 2019, 46: 0502003
|
7 |
Charmi A, Falkenberg R, Ávila L, et al. Mechanical anisotropy of additively manufactured stainless steel 316L: an experimental and numerical study [J]. Mater. Sci. Eng., 2021, 799A: 140154
|
8 |
Deev A A, Kuznetcov P A, Petrov S N. Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method [J]. Phys. Procedia, 2016, 83: 789
doi: 10.1016/j.phpro.2016.08.081
|
9 |
Roth C C, Tancogne-Dejean T, Mohr D. Plasticity and fracture of cast and SLM AlSi10Mg: high-throughput testing and modeling [J]. Addit. Manuf., 2021, 43: 101998
|
10 |
Gupta M K, Singla A K, Ji H S, et al. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy [J]. J. Mater. Res. Technol., 2020, 9(5): 9506
doi: 10.1016/j.jmrt.2020.06.090
|
11 |
Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
doi: 10.11901/1005.3093.2021.105
|
11 |
刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
|
12 |
Agius D, Kourousis K I, Wallbrink C, et al. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation [J]. Mater. Sci. Eng., 2017, 701A: 85
|
13 |
Qin F, Shi Q, Liu X, et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melted 17-4PH stainless steel [J]. Chin. J. Mater. Res., 2021, 35(8): 606
doi: 10.11901/1005.3093.2020.553
|
13 |
秦 奉, 施 麒, 刘 辛 等. 热处理对选区激光熔化17-4PH不锈钢力学性能的影响 [J]. 材料研究学报, 2021, 35(8): 606
|
14 |
Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54(12): 1833
doi: 10.11900/0412.1961.2018.00153
|
14 |
张亚娟, 王海滨, 宋晓艳 等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54(12): 1833
doi: 10.11900/0412.1961.2018.00153
|
15 |
Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
|
16 |
Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
|
16 |
余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
|
17 |
Tascioglu E, Karabulut Y, Kaynak Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2020, 107(5-6): 1947
doi: 10.1007/s00170-020-04972-0
|
18 |
Liverani E, Lutey A H A, Ascari A, et al. The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM) [J]. Int. J. Adv. Manuf. Technol., 2020, 107(1-2): 109
doi: 10.1007/s00170-020-05072-9
|
19 |
Smith T R, Sugar J D, Schoenung J M, et al. Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel [J]. Mater. Sci. Eng., 2019, 765A: 138268
|
20 |
Kumar P, Jayaraj R, Suryawanshi J, et al. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta Mater., 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
|
21 |
Kale A B, Singh J, Kim B K, et al. Effect of initial microstructure on the deformation heterogeneities of 316L stainless steels fabricated by selective laser melting processing [J]. J. Mater. Res. Technol., 2020, 9(4): 8867
doi: 10.1016/j.jmrt.2020.06.015
|
22 |
Dryepondt S, Nandwana P, Fernandez-Zelaia P, et al. Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion [J]. Addit. Manuf., 2021, 37: 101723
|
23 |
Song Y N, Sun Q D, Guo K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, 793A: 139879
|
24 |
Meng Q, La P Q, Li H, et al. Influence of Al content on microstructure and properties of casting 316L stainless steel [J]. Hot Work. Technol., 2016, 45(10): 64
|
24 |
孟 倩, 喇培清, 李 恒 等. 铝含量对铸造316L不锈钢组织和性能的影响 [J]. 热加工工艺, 2016, 45(10): 64
|
25 |
Cheng L Y, Zhu X G, Liu Z W, et al. Effect of heat treatment on microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting [J]. Trans. Mater. Heat Treat., 2020, 41(7): 80
|
25 |
程灵钰, 朱小刚, 刘正武 等. 热处理对激光选区熔化成形316L不锈钢组织和力学性能的影响 [J]. 材料热处理学报, 2020, 41(7): 80
doi: 10.13289/j.issn.1009-6264.2020-0068
|
26 |
Ling J, Pan J. A maximum likelihood method for estimating P-S-N curves [J]. Int. J. Fatigue, 1997, 19(5): 415
doi: 10.1016/S0142-1123(97)00037-6
|
27 |
Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes [J]. Inter. J. Fatigue, 2017, 94: 178
doi: 10.1016/j.ijfatigue.2016.06.020
|
28 |
Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, 598A: 327
|
29 |
Murakami Y. Material defects as the basis of fatigue design [J]. Int. J. Fatigue, 2012, 41: 2
doi: 10.1016/j.ijfatigue.2011.12.001
|
30 |
Romano S, Brandão A, Gumpinger J, et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements [J]. Mater. Des., 2017, 131: 32
doi: 10.1016/j.matdes.2017.05.091
|
31 |
Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
doi: 10.1016/0142-1123(94)90001-9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|