材料研究学报, 2024, 38(3): 221-231 DOI: 10.11901/1005.3093.2023.119

研究论文

激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为

李飞阳1, 刘志红1, 乔岩欣1, 杨兰兰1, 卢道华2, 汤雁冰,2

1.江苏科技大学材料科学与工程学院 镇江 212003

2.江苏科技大学海洋装备研究院 镇江 212003

Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution

LI Feiyang1, LIU Zhihong1, QIAO Yanxin1, YANG Lanlan1, LU Daohua2, TANG Yanbing,2

1.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China

通讯作者: 汤雁冰,正高级工程师,tyb2213@just.edu.cn,研究方向为材料腐蚀与防护及腐蚀监测

责任编辑: 黄青

收稿日期: 2023-02-06   修回日期: 2023-05-26  

基金资助: 国家重点研发计划(2018YFC0309100)
江苏省重点研发计划重点项目(BE2022062)

Corresponding authors: TANG Yanbing, Tel:(0511)88896820, E-mail:tyb2213@just.edu.cn

Received: 2023-02-06   Revised: 2023-05-26  

Fund supported: National Key Research and Development Program of China(2018YFC0309100)
Key Project of Jiangsu Province Key R&D Program(BE2022062)

作者简介 About authors

李飞阳,男,1992年生,硕士生

摘要

对激光选区熔化316L不锈钢(SLM 316L)进行开路电位、电化学阻抗、动电位极化、恒电位极化、暂态电流-时间测量以及Mott-Schottky、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和电子背散射衍射(EBSD)等表征,与商用轧制316L不锈钢(R 316L)对比研究其在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液环境中的钝化行为。结果表明:这两种钢钝化膜的形核机制均为连续形核,但是SLM 316L不锈钢的晶粒更小、晶界密度更高、钝化膜生长得更快。SLM 316L不锈钢发生过钝化溶解但是不发生点蚀,而R316L不锈钢发生点蚀。SLM 316L不锈钢的耐蚀性能更优,因为其为均一的奥氏体相且有大量的小角度晶界;同时,表面生成的钝化膜中的O2-/OH-比值更低、载流子浓度更低、Cr2O3的含量更高和NiO含量更低,对钝化膜的保护效果更好,使其具有优异的耐点蚀性能。

关键词: 材料失效与保护; 钝化行为; 电化学测试; 316L不锈钢

Abstract

The open-circuit potential, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostats polarization, current-time transient measurements, Mott-Schottky analysis, X-ray photoelectron spectroscopy (XPS), Electron Back-Scattered Diffraction(EBSD)methods were used to investigate the passivation behavior of 316L stainless steel fabricated by laser selective melted (SLM 316L) in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution. The results were compared with commercial rolled 316L stainless steel (R 316L). The results showed that the nucleation of passivation film follows continuous mechanism for the both stainless steel. However, the SLM 316L stainless steel has smaller grain size and higher grain boundary density than those of R 316L stainless steel. Therefore, the grow rate of passivation film is fast. The SLM 316L stainless steel took place transpassivation dissolution, while R 316L stainless steel took place pitting corrosion. The SLM 316L stainless steel has better corrosion resistance. The main reasons are the SLM 316L stainless steel has much more low angle grain boundaries without ferrite. Moreover, the passivation film of SLM 316L stainless steel has lower carrier density, lower ratio of O2-/OH-, lower content of NiO and higher content of Cr2O3 compared with R 316L stainless steel.

Keywords: materials failure and protection; passivation behavior; electrochemical tests; 316L stainless steel

PDF (12250KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231 DOI:10.11901/1005.3093.2023.119

LI Feiyang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, TANG Yanbing. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution[J]. Chinese Journal of Materials Research, 2024, 38(3): 221-231 DOI:10.11901/1005.3093.2023.119

增材制造(AM)是一种基于计算机辅助设计模型用逐层堆积构造复杂形状零件的先进方法[1]。这种方法有低能耗、设计自由和灵活性高等优点[2,3],已经应用在汽车制造、电子信息、生物医疗、军工和航空航天等行业。选区激光熔化技术使用直径小于100 μm的高温热源,逐层堆积构造零部件[4]。激光束产生的高温有很大的热梯度,零部件在成形过程中产生微裂纹和孔隙且在晶粒内生成胞状结构和熔池边界[5],使材料的腐蚀行为与用常规方法成形的部件不同。

316L不锈钢是常用的增材制造材料。对增材制造的316L不锈钢(SLM 316L)的腐蚀行为,已有较多的研究[6~12]。Lodhi等[6]研究了SLM 316L不锈钢在人工海水中的电化学腐蚀行为,发现起比锻造316L不锈钢的耐腐蚀性更好,因为其表面的钝化膜中富集了Cr2O3。Zhang等[7]研究了SLM 316L不锈钢和锻造316L不锈钢在3.5%NaCl溶液中的点蚀行为,发现SLM 316L不锈钢的点蚀电位明显高于锻造316L不锈钢。Zhao等[8]研究了SLM 316L不锈钢在3.5%NaCl溶液中的腐蚀行为,发现起点蚀先发生在熔池的边界。Zhao等[9]研究了SLM 316L不锈钢在深海环境下的耐蚀性能,发现其晶粒减小、晶界密度较高和耐蚀性能更好。Laleh等[10]研究了SLM 316L不锈钢在0.6 mol/L NaCl溶液中的耐蚀性能,发现其比商用316L不锈钢的耐蚀性能更高。

关于在酸性环境中的腐蚀,Trelewicz等[11]研究了粉末床融合增材制造316L不锈钢在0.1 mol/L HCl溶液中的腐蚀行为,并与经淬火处理的铸造316L不锈钢进行了对比。结果表明,粉末床融合增材制造316L不锈钢在成形过程中生成的不均匀固溶体和非平衡组织,使其耐蚀性降低。Geenen等[12]研究了SLM 316L不锈钢在0.5 mol/L H2SO4溶液中的腐蚀行为,发现其中出现了大量的孔洞,使其耐蚀性能低于经固溶退火处理的铸造316L不锈钢。本文研究SLM 316L不锈钢的微观组织及其在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的钝化行为,并深入探讨微观组织和钝化膜对其耐蚀性能的影响。

1 实验方法

1.1 样品的制备

在高纯度Ar气保护下制备选区激光熔化316L不锈钢(SLM 316L),成形参数为:功率220 W,扫描速度850 mm/s,层厚0.05 mm。对比材料为商用冷轧316L(R 316L)不锈钢。两种材料的主要化学成分见表1

表1   SLM 316L和R 316L的化学成分

Table 1  Chemical Composition of SLM 316L and R 316L (mass fraction, %)

SiMnPSNiCrCMoFe
SLM 316L0.250.710.0070.00610.5816.410.0132.67Bal.
R 316L0.4471.1670.0310.00110.16216.8210.0192.102Bal.

新窗口打开| 下载CSV


长方体试样的尺寸为10 mm × 5 mm × 2 mm,去除表面油污。工作面的截面积为10 mm × 5 mm,在其背面焊接铜导线。将其余各面用环氧树脂密封。依次用800#、1000#、1500#、2000#的SiC水砂纸逐级打磨后,依次用去离子水、无水乙醇冲洗后用冷风吹干,再用指甲油封住工作面与环氧树脂的结合处,晾干后待用。

1.2 性能表征和组织观察

使用Gamry600+电化学工作站进行电化学测试,测试电极体系为三电极体系,Pt为辅助电极(CE),饱和甘汞电极(SCE)为参比电极(RE),待测样品为工作电极(WE),测试溶液为0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液,由质量分数为97%的浓H2SO4 (分析纯)和NaCl盐(分析纯)加入二次去离子水中配制而成。

为了使体系达到稳态,开路电位的测试时间为1800 s。在开路电位下测试电化学阻抗图谱(EIS),其频率测试范围为104~10-2 Hz,振幅为10 mV;动电位极化曲线的扫描速率为0.333 mV/s,扫描范围为-0.5~1.0 V (vs. SCE)。测试动电位极化曲线前,先将试样在测试溶液中浸泡1800 s;测试恒电位极化的电位为0.1 V (vs. SCE),极化时间为1200 s。在恒电位极化之后立即测试Mott-Schottky曲线,以保证试样表面生成钝化膜,测试范围为-0.25~1.0 V,幅值为10 mV,步长为20 mV,固定频率为1000 Hz。

所有实验都在室温下进行((25 ± 1)℃),所有试验均重复三次以上。

在室温下,采用草酸电解方法电解出两种不锈钢的金相显微组织形貌。用Regulus810场发射扫描电子显微镜(SEM)观察两种不锈钢的微观组织形貌。用Gemini SEM300扫描电镜测试了两种不锈钢的相成分、晶粒尺寸以及形状,使用Chinnel5和Image-Pro-Plus软件分析数据。用X-射线衍射仪(XRD)分析两种不锈钢相成分,使用jade6软件处理数据。采用Thermo Scientific Escalab 250Xi X射线光电子能谱(XPS)分析两种不锈钢在恒电位极化(0.1 V)1200 s后生成的钝化膜表面的化学成分,测试了Fe2p、Cr2p、Mo3d、Ni2p和O1s这五种能谱图。XPS处理时C1s峰的结合能被校准在248.8 eV能量刻度,并用Ar+离子束溅射表面以对元素进行深度剖析。使用Thermo Avantage软件处理实验数据。

2 结果和讨论

2.1 样品的相组成

图1给出了SLM 316L不锈钢和R 316L不锈钢的X射线衍射谱(XRD)。可以看出,两种材料的谱中出现了(111)、(200)、(220)三种衍射峰,表明316L不锈钢为奥氏体不锈钢(γ-Fe)为面心立方结构(fcc)。与SLM 316L单一的奥氏体相(γ-Fe)不同,R 316L不锈钢中除了奥氏体相,还有α′(110)—δ铁素体,其衍射峰位于44.62°[13]α′(110)—δ铁素体降低了R 316L不锈钢的耐蚀性[14]

图1

图1   SLM 316L和R 316L的XRD谱

Fig.1   X-ray diffraction pattern of SLM 316L and R 316L


2.2 微观形貌

图2给出了两种不锈钢的金相照片,可见SLM 316L不锈钢呈典型的熔池特征(图2a),而R316L不锈钢呈等轴晶特征(图2b)。图3给出了两种不锈钢的扫描电镜微观形貌。可以看出,SLM 316L不锈钢呈典型的熔池特征,熔池边界内有很多的孔隙缺陷,熔池边界四周有不同形状的枝状晶和胞状晶结构[5],熔池边界四周不同区域的枝状晶形状、尺寸和方向不同(图3a)。其原因是热膨胀收缩应力引起的塑性变形使晶粒内产生不同的亚结构[15]。枝状晶沿着微区的温度梯度择优生长,也就是在激光选区熔化过程中材料冷却的速度不同所致,其中细长条的枝状晶其冷却速度比胞状晶和较短的长条枝状晶低[16]。R 316L不锈钢为典型的等轴多边形晶粒组成的奥氏体(图3b)。

图2

图2   SLM 316L和R 316L的金相组织

Fig.2   Metallographic Structure of SLM 316L (a) and R 316L (b)


图3

图3   SLM 316L和R 316L的SEM图像

Fig.3   SEM Image of SLM 316L (a) and R 316L (b)


图4分别给出了两种钢的反极图(4a,4b)、Phase图(4c,4d)和晶粒尺寸统计图(4e,4f)。图4a表明,SLM 316L不锈钢主要由柱状晶粒和不规则晶粒组成,在柱状晶和其它不规则晶粒内含有大量的小角度晶界(2°~15°),小角度晶界的能量更低,腐蚀敏感性较弱。图4a4c表明,SLM 316L不锈钢的晶面构建方向与XRD谱(图1)给出的结果一致,只有奥氏体相。图4b表明,R 316L反极图(IPF)给出的晶粒取向与XRD谱(图1)给出的晶面构建方向基本一致,而且在等轴晶粒内观察到少量的孪晶和亚晶界。从图4d的Phase图可见,R 316L不锈钢由奥氏体和少量的铁素体组成,与XRD谱(图1)给出的结果相同。体心立方(bcc)结构的铁素体主要出现在奥氏体晶界附近,铁素体的存在使R 316L不锈钢的耐腐蚀性降低[14]。图4e4f表明,SLM 316L和R 316L的晶粒尺寸为0~15 μm,分别占全部晶粒的94%和90.9%。在两种材料中还有少量晶粒尺寸大于50 μm的超大晶粒,其含量分别为0.4%和2.1%。分析两种不锈钢的晶粒尺寸可知,SLM 316L的晶粒更小。晶粒越小,则晶界的密度越高,材料的耐蚀性越好[17]

图4

图4   两种不锈钢材料的EBSD分析

Fig.4   EBSD analysis diagram for two stainless steel materials (a, c, e) SLM 316L stainless steel, (b, d, f) R316L stainless steel


2.3 电化学性能

2.3.1 开路电位

图5给出了SLM 316L不锈钢和R 316L不锈钢在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的开路电位(EOCP)。可以看出,随着浸泡时间的延长两种材料的开路电位都正移,表明两种材料表面生成了钝化膜且其厚度不断增大[18]。SLM 316L不锈钢的开路电位正于R 316L不锈钢,SLM 316L不锈钢的活性更低,发生腐蚀的倾向性更小,腐蚀反应更难发生。

图5

图5   SLM 316L不锈钢和R 316L不锈钢的开路电位

Fig.5   Open circuit potential of SLM 316L stainless steel and R 316L stainless steel


2.3.2 动电位极化

图6是两种材料在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中动电位极化曲线。SLM 316L不锈钢发生过钝化溶解,这可能与钝化膜过钝化溶解之前膜中形成价态更高的铬元素有关[19]。而R 316L不锈钢发生点蚀,钝化膜已被击破,表明SLM 316L不锈钢表面形成的钝化膜的稳定性更高。此外,SLM 316L不锈钢的维钝电流密度略低于R 316L不锈钢,表明SLM 316L不锈钢表面生成的钝化膜保护性能更好,耐蚀性更好。

图6

图6   SLM 316L和R 316L在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的动电位极化曲线

Fig.6   Potentiodynamic polarization curve of SLM 316L and R 316L in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution


2.3.3 电化学阻抗谱

图7给出了SLM 316L和R 316L在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的Nyquist图和Bode图。可以看出,两种不锈钢的Nyquist图均呈现一个压扁的不完整圆弧(图7a)。从图7b可见,两种不锈钢的Bode图均为一个不对称的峰且波峰较宽,表明电化学阻抗谱有两个时间常数,分别对应钝化膜电容和双电层电容。从图7b还可以看出,SLM 316L不锈钢和R 316L不锈钢在0.1 Hz对应的|Z|值分别为3.23 × 104 Ω·cm2和3.12 × 104 Ω·cm2。极化电阻与Bode图在0.1 Hz对应的|Z|值有关[20],SLM 316L不锈钢在0.1 Hz对应的|Z|值略高于R 316L不锈钢,表明SLM 316L不锈钢的极化电阻值略大,耐蚀性略优。

图7

图7   SLM 316L和R 316L在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的电化学阻抗谱(EIS)

Fig.7   Electrochemical impedance spectroscopic (EIS) of SLM 316L and R 316L in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution


图8给出了电化学阻抗谱(EIS)的等效电路,拟合后的数据列于表2。其中Rs表示溶液电阻,R1表示钝化膜电阻,R2表示电荷转移电阻,C表示双电层电容,CPE表示钝化膜电容。由表2可见,SLM 316L不锈钢的钝化膜电阻和电荷转移电阻均大于R 316L不锈钢。这表明,SLM 316L不锈钢钝化膜的保护性更好,腐蚀反应速率更低,耐蚀性更好。

图8

图8   R 316L不锈钢和SLM 316L不锈钢的EIS等效电路图

Fig.8   Equivalent circuit diagram EIS of R 316L and SLM 316L


表2   SLM 316L和R 316L的等效电路参数

Table 2  Equivalent circuit parameters for SLM 316L and R 316L

Rs / Ω·cm2CPE1 / F·cm-2nR1 / Ω·cm2C / F·cm-2R2 / Ω·cm2
SLM 316L12.894.21 × 10-50.876.31 × 104-1.97 × 10-52.33 × 105
R 316L13.674.53 × 10-50.865.88 × 104-2.44 × 10-51.71 × 105

新窗口打开| 下载CSV


2.3.4 钝化膜的形核机制和生长速率

按形核机制的不同,可将钝化膜的形核分为连续形核和瞬时形核。钝化膜形核的理论模型[21]

j2jm2=1.2254ttm{1-exp[-2.3367(ttm)2]}2

j2jm2=1.9542ttm{1-exp[-1.2564(ttm)]}2

式中tmjm 为曲线的峰位对应的时间和电流密度。图9给出了两种材料在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的暂态电流随时间的变化。在0.1VSCE,电极系统对外界电压的响应导致电流急剧上升,随后钝化膜的形核导致电流急速下降。SLM 316L不锈钢的暂态电流-时间曲线峰值对应的时间和电流均小于R 316L不锈钢,表明SLM 316L的钝化速度更高[22]图10给出了SLM 316L不锈钢和R 316L不锈钢的暂态实验曲线与标准形核的对比。可以看出,SLM 316L和R 316L的形核机制均为连续形核,即在极化过程中不锈钢表面的活性点逐渐激活。这表明,激光选区熔化技术不改变316L不锈钢表面钝化膜的形核机制。

图9

图9   SLM 316L和R 316L在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的暂态电流随时间的变化

Fig.9   SLM 316L and R 316L in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution transient current versus time


图10

图10   SLM 316L不锈钢和R 316L不锈钢的暂态实验曲线与标准形核的对比

Fig.10   transient experimental curve of SLM 316L stainless steel and R 316L stainless steel and check comparison with standard shape


在钝化过程中,在不锈钢表面钝化膜的形成速度为

λ=ΔEΔt

式子中ΔE为电位差,Δt为持续的时间,λ为开路电位曲线的斜率值即钝化膜的形成速度。λ的值越大,表明钝化膜的形成速度越高[23]。对图4中开路电位曲线的拟合结果表明,SLM 316L不锈钢开路电位初始阶段和稳定阶段的斜率值λ分别为2.57 × 10-4和3.65 × 10-5,而R 316L不锈钢开路电位的初始阶段和稳定阶段的斜率值λ分别为1.50 × 10-4和2.75 × 10-5。这个结果表明,SLM 316L不锈钢的钝化膜生长速率更快。其主要的原因是,SLM 316L不锈钢的晶粒尺寸较小,更多的晶界为不锈钢元素的扩散提供了大量的通道,从而提高了钝化膜的生长速度[24]

2.4 钝化膜的性能

2.4.1 钝化膜的半导体特性

钝化膜的载流子浓度是表征其保护性能的因素之一[25],根据Mott-Schottky理论分析钝化膜空间电容(Csc)与电极电位(E)的关系以确定钝化膜中载流子的浓度[26,27]CscE之间的关系可表示为

1Csc2=2εε0eNq(E-Efb-kTe)

式中C为钝化膜的空间电容,ε0为真空介电常数(8.85 × 10-14 F·cm-1),ε为室温下钝化膜的介电常数(取值15.6[28]),Nq为载流子密度。Efb为平带电位,k为波尔兹曼常数(1.38 × 10-23),T为绝对温度,e为电子电量(1.6 × 10-19 C)。根据不同电压范围内1/CSC2-E曲线的直线斜率,可求出钝化膜的半导体类型和载流子密度。斜率为正,表明为n-型半导体特征,电子是主要载流子;斜率为负,表明为p-型半导体特征,空穴是主要载流子。

图11给出了两种材料在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的Mott-Schottky曲线。可以看出,两种材料的钝化膜均为p-n结结构,在-0.2~0.2 V电位范围内钝化膜呈p型半导体特征,在0.6~1.0 V电位范围内钝化膜呈n型半导体特征。钝化膜呈多种半导体类型特征的原因,是钝化膜由不同种类的金属氧化物和氢氧组成。Azumi等[29]研究表明,含有Fe2O3、Fe(OH)3等金属氧化物的钝化膜表现为n型半导体特性,含有Cr2O3氧化物的钝化膜表现为p型半导体特征。

图11

图11   SLM 316L不锈钢和R 316L不锈钢在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中的Mott-Schottky曲线

Fig.11   Mott-Schottky curves of SLM 316L stainless steel and R 316L stainless steel in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution


拟合图11中的数据并根据 公式(4)即可计算出钝化膜的施主/受主浓度,结果在图12中给出。可以看出,与R 316L不锈钢相比,SLM 316L不锈钢钝化膜的施主浓度(ND)和受主浓度(NA)分别降低了9.3%和6.3%。研究表明[30],钝化膜的施主浓度(ND)和受主浓度(NA)减小使其导电性的降低,阻挡离子迁移的能力增强。即SLM 316L不锈钢表面形成的钝化膜的载流子浓度更低,钝化膜的保护效果更好。

图12

图12   两种不锈钢在0.05 mol/L H2SO4 + 0.2 mol/L NaCl溶液中形成的钝化膜的载流子密度

Fig.12   Carrier density of passivation films formed in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution for two stainless steels


2.4.2 钝化膜的致密性

钝化膜能保护材料免于腐蚀,钝化膜越致密则其保护效果越好。钝化膜的致密性,可用电流密度随时间变化的双对数关系[31]

I=10-A+klgt

表征。式中I为电流密度,t为时间,A为常数,k为双对数曲线斜率。k = -1时生成的是致密型的钝化膜,保护性良好;k = -0.5时生成疏松多孔的钝化膜,保护性差[32,33]图13给出了两种不锈钢材料的电流密度与时间的双对数曲线。对曲线拟合的结果表明:两种材料的斜率分别为-0.823和-0.79,k值均接近-1,表明两种材料表面生成的钝化膜较为致密。

图13

图13   两种不锈钢的电流密度随时间变化的双对数曲线

Fig.13   Double logarithmic curves of current density with time for two stainless steels


2.5 钝化膜的成分

图14给出了钝化膜的XPS光谱及其拟合结果。在Fe 2p3/2光谱(图14a14b)中,Fe 2p3/2光谱划分为四个峰,分别属于FeOOH、Fe2O3、Fe3O4和金属Fe[34]。SLM 316L不锈钢和R 316L不锈钢中构成钝化膜的FeOOH、Fe2O3和Fe3O4的含量很高。Cr 2p3/2光谱划分为Cr(OH)3、Cr2O3、金属Cr三个峰(图14c14d),其中SLM 316L不锈钢Cr2O3/Cr(OH)3的比值为3.53,高于R 316L不锈钢的3.13。从图(14c,14d)可见,Mo 3d光谱有Mo 3d5/2和Mo 3d3/2两个轨道共六个峰,分别属于金属Mo、Mo4+和Mo6+。Mo6+是钝化膜中Mo的主要价态,Mo6+的存在降低了钝化膜的施主浓度和受主浓度[35]。SLM 316L不锈钢中Mo6+的含量高于Mo4+的含量。从Ni 2p3/2光谱(图14e14f)可见,Ni在钝化膜中以金属Ni和NiO的形式存在。从Ni的峰面积比可知,SLM 316L不锈钢的NiO含量远低于金属Ni。R 316L不锈钢中NiO含量略低于金属Ni的含量。从O 1s光谱(图14i14g)可知,O 1s可划分为H2O、OH-和O2-三个峰。其中OH-和O2-与钝化膜中生成的氢氧化物和氧化物的有关,钝化膜中的结合水H2O能捕获溶解的金属离子,对钝化膜有良好的修复作用[36]。从O 1s的不同离子峰的面积比可知,O2-的峰值面积大于OH-,说明钝化膜中的Cr和Fe氧化物的含量更高。Cheng等的[37]研究表明,O2-/OH-比值越低则发生点蚀的可能性越大。SLM 316L不锈钢中O2-/OH-的比值(为4.31)大于R 316L不锈钢O2-/OH-的比值(为1.63)。这表明,SLM 316L不锈钢的点蚀风险比R 316L不锈钢低。

图14

图14   两种不锈钢表面钝化膜的XPS分析

Fig.14   XPS analysis results of the surface passivation films of two stainless steels (a, c, e, g, i) SLM 316L stainless steel, (b, d, f, h, j) R 316L stainless steel


图15给出了两种不锈钢表面钝化膜中Fe、Cr、Ni、O和Mo元素的深度分布(15a,15b),以及对钝化膜中原子百分比深度的分布拟合结果(15c,15d)。如图15a15b所示,随着溅射时间的延长Fe和Ni的含量随之提高,Cr和O的含量先提高后降低最后趋于平稳,Mo的含量基本上不变。SLM 316L不锈钢表层的Fe、Cr和O含量都比R 316L不锈钢的低,且两种不锈钢中Cr的含量都比Fe的含量高。这表明,在酸性环境中钝化膜的外层由富Fe外层变成富Cr外层[38]。如图15c15d所示,与R 316L不锈钢相比,SLM 316L不锈钢中Cr2O3的含量略高,NiO含量略低,表层中的情况更为明显。Cr2O3含量越高,表明钝化膜对金属基体的保护性能越高[39,40]。NiO的特点是多孔的[41],而金属Ni则有利于在金属表面生成薄而致密的钝化膜[42]。因此,与R 316L不锈钢相比,SLM 316L不锈钢生成的钝化膜致密性更高,保护性能更好。

图15

图15   两种不锈钢表面钝化膜成分的深度分布

Fig.15   Depth distribution of passivation film composition on the surface of two stainless steels (a, c) SLM 316L stainless steel and (b, d) R 316L stainless steel


3 结论

(1) SLM 316L不锈钢由奥氏体相组成,而R 316L不锈钢由奥氏体主相和少量的铁素体相组成。与R 316L不锈钢相比,SLM 316L不锈钢中小角度晶界的占比更高,晶粒更小。

(2) 这两种钢的钝化膜的形核机制均为连续形核,选区熔化增材制造并未改变316L不锈钢的表面钝化膜的形核机制,但是SLM 316L不锈钢表面钝化膜的生长速率更高。

(3) SLM 316L不锈钢发生过钝化溶解,而R 316L不锈钢发生点蚀。与R 316L不锈钢相比,SLM 316L不锈钢表面生成的钝化膜中的O2-/OH-比值更低,耐点蚀性能更优,且其钝化膜的载流子浓度更低,Cr2O3的含量更高、NiO含量更低,钝化膜的保护效果更好。

参考文献

Bacciaglla A, Ceruti A, Liverani A, et al.

Towards large parts manufacturing in additive technologies for aerospace and automotive applications

[J]. Procedia Computer Science, 2022, 200: 1113

DOI      URL     [本文引用: 1]

Melenka G W, Cheung B K O, Schofield J S, et al.

Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3d printed structures

[J]. Compos. Struct., 2016, 153: 866

DOI      URL     [本文引用: 1]

Daminabo S C, Goel S, Grammatikos S A, et al.

Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems

[J]. Mater. Today., Chem., 2020, 16: 100248

[本文引用: 1]

Guo Q, Zhao C, Qu M, et al.

In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process

[J]. Addit. Manuf., 2019, 28: 600

[本文引用: 1]

Li R, Niu P, Yuan T.

Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property

[J]. J. Alloy. Compd., 2018, 746: 125

DOI      URL     [本文引用: 2]

Lodhi M J K, Iams A D, Sikora E, et al.

Microstructural features contributing to macroscopic corrosion: The role of oxide inclusions on the corrosion properties of additively manufactured 316L stainless steel

[J]. Corros. Sci., 2022, 203: 110354

DOI      URL     [本文引用: 2]

Zhang Z, Yuan X, Zhao Z, et al.

Electrochemical noise comparative study of pitting corrosion of 316L stainless steel fabricated by selective laser melting and wrought

[J]. J. Electroanal. Chem., 2021, 894: 115351

DOI      URL     [本文引用: 1]

Zhao C L, Bai Y, Zhang Y, et al.

Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel

[J]. Mater. Design., 2021, 209: 109999

[本文引用: 1]

Zhao Y, Xiong H, Li X, et al.

Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment

[J]. Corros. Commun., 2021, 2: 55

[本文引用: 1]

Laleh M, Hughes A E, Xu W, et al.

Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting

[J]. Corros. Sci., 2019, 155: 67

DOI      URL     [本文引用: 1]

Trelewicz J R, Halada G P, Donaldson O K, et al.

Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel

[J]. Jom-Us., 2016, 68(7): 764

[本文引用: 1]

Geenen K, Roettger A, Theisen W, et al.

Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting

[J]. Mater. Corros., 2017, 68(7): 764

[本文引用: 2]

De Souza Silva E M F, Da Fonseca G S, Ferreira E A, et al.

Microstructural and selective dissolution analysis of 316L austenitic stainless steel

[J]. J. Mater. Res. Technol. J, 2021, 15: 4317

DOI      URL     [本文引用: 1]

Ha H Y, Park C J, Kwon H S, et al.

Effects of non-metallic inclusions on the initiation of pitting corrosion in 11%Cr ferritic stainless steel examined by micro-droplet cell

[J]. Corros. Sci., 2007, 49(3): 1266

DOI      URL     [本文引用: 2]

Qu H, Li J, Zhang F, et al.

Anisotropic cellular structure and texture microstructure of 316L stainless steel fabricated by selective laser melting via rotation scanning strategy

[J]. Mater. Design., 2022, 215: 110454

[本文引用: 1]

Depionoy S.

Influence of solidification conditions on chemical heterogeneities and dislocations patterning in additively manufactured 316L stainless steel

[J]. Materialia, 2022, 24: 101472

DOI      URL     [本文引用: 1]

Zhao Y, Xiong H, Li X, et al.

Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment

[J]. Corros. Commun., 2021, 2: 55

[本文引用: 1]

El Shams, Din A M, Paul N J, et al.

Oxide film thickening on the surface of metals in aqueous solutions: A critique of the theory of open-circuit potential transients

[J]. Thin Solid Films, 1990, 189(2): 205

DOI      URL     [本文引用: 1]

Fattah Alhosseini A, Saatchi A, Golozar M A, et al.

The transpassive dissolution mechanism of 316L stainless steel

[J], Electrochim. Acta., 2009, 54(13): 3645

DOI      URL     [本文引用: 1]

Della Rovere C A, Alano J H, Silva R, et al.

Characterization of passive films on shape memory stainless steels

[J]. Corros. Sci., 2012, 57: 154

DOI      URL     [本文引用: 1]

Hills G J, Peter L M, Scharifker B R, et al.

The nucleation and growth of two-dimensional anodic films under galvanostatic conditions

[J], J. Electroanal. Chem., 1981, 124(1): 247

DOI      URL     [本文引用: 1]

Gai X, Bai Y, Li J, et al.

Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting

[J]. Corros. Sci., 2018, 145: 80

DOI      URL     [本文引用: 1]

Li T, Liu L, Zhang B, et al.

Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles

[J]. Corros. Sci., 2014, 85: 331

DOI      URL     [本文引用: 1]

Pan C, Liu L, Li Y, et al.

Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques

[J]. Electrochim. Acta., 2011, 56: 7740

DOI      URL     [本文引用: 1]

Shi T, Sun J Q, Wang X W, et al.

Effect of trace water in ammonia on breaking passive film of stainless steel during gas nitriding

[J]. Vacuum., 2022, 202: 111216

DOI      URL     [本文引用: 1]

Hakiki N E, Belo M D C, Simoes A M P, et al.

Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements

[J]. J. Electrochem. Soc., 1998, 145(11): 3821

DOI      [本文引用: 1]

Goodlet G, Faty S, Cardoso S, et al.

The electronic properties of sputtered chromium and iron oxide films

[J]. Corros. Sci., 2004, 46(6): 1479

DOI      URL     [本文引用: 1]

Sander G, Babu A P, Gao X, et al.

On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting

[J]. Corros. Sci., 2021, 179:109146

DOI      URL     [本文引用: 1]

Azumi K, Ohstuka T, Sato N, et al.

Mott-Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions

[J]. J. Electrochem. Soc., 1987, 134(6):1352

DOI      [本文引用: 1]

Carmezim M J, Simões A M, Montemor M F, et al.

Capacitance behaviour of passive films on ferritic and austenitic stainless steel

[J]. Corros. Sci. 2005, 47(3): 581

DOI      URL     [本文引用: 1]

Liu L, Li Y, Wang F, et al.

Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions

[J]. Electrochim. Acta., 2007, 52(7): 2392

DOI      URL     [本文引用: 1]

Subba Rao R V, Wolff U, Baunack S, et al.

Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy

[J]. Corros. Sci., 2003, 45(4): 817

DOI      URL     [本文引用: 1]

Gebert A, Wolff U, John A, et al.

Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes

[J]. Mat. Sci. Eng A-Struct., 2001, 299(1): 125

DOI      URL     [本文引用: 1]

Yue X, Yang Z, Huang L, et al.

Passivation characteristics of ultra-thin 316L foil in NaCl solutions

[J]. J. Mater. Sci. Technol., 2022, 127:192

DOI      [本文引用: 1]

Electrochemical behaviour and passive film characteristics of an ultra-thin 316L foil with a thickness of 20 μm in 3.5 wt.% NaCl solution were investigated using multiple techniques, focusing on the effect of microstructure, the applied potential, and the pH of the solution. The microstructure contains mainly fine grains (∼4 μm) with high-angle boundaries and preferential orientation of (220), and no MnS inclusion was detected. The electrochemical measurements show a significantly higher breakdown potential and lower passive current density for the 316L foil than traditional wrought 316L. The surface analyses using angle-resolved X-ray photoelectron spectroscopy (ARXPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) reveal that, compared to the wrought material, both the inner and out parts of the passive film on the 316L foil are more enriched in Cr- and Mo-oxides. The microstructure favourable for elemental diffusion and the absence of MnS inclusion facilitate the formation of a continuous compact Cr- and Mo-rich passive film, which effectively retards corrosion in NaCl solution and remains stable in acidic solution (pH 2) or at high polarised potential up to 600 mV vs Ag/AgCl.

Pardo A, Merino M C, Coy A E, et al.

Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4

[J]. Corros. Sci., 2008, 50(3): 780

DOI      URL     [本文引用: 1]

Luo H, Su H, Li B, et al.

Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

[J]. Appl. Surf. Sci., 2018, 439: 232

DOI      URL     [本文引用: 1]

Cheng H, Luo H, Wang X, et al.

Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment

[J]. Mater. Chem. Phys., 2022, 292: 126837

DOI      URL     [本文引用: 1]

Liu C T, Wu J K.

Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution

[J]. Corros. Sci., 2007, 49(5): 2198

DOI      URL     [本文引用: 1]

Li J, Wang Q, Yang Y, et al.

Enhancing pitting corrosion resistance of severely cold-worked high nitrogen austenitic stainless steel by nitric acid passivation

[J]. J. Electrochem. Soc., 2019, 166(13): 365

[本文引用: 1]

Lee J B, Yoon S I.

Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels

[J]. Mater. Chem. Phys., 2010, 122(1): 194

DOI      URL     [本文引用: 1]

Liu L, Li Y, Wang F.

Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl

[J]. Electrochim. Acta., 2007, 52(25): 7193

DOI      URL     [本文引用: 1]

Abreu C M, Cristobal M J, Losada R, et al.

The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels

[J]. Electrochim. Acta., 2006, 51(15): 2991

DOI      URL     [本文引用: 1]

/