Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (2): 141-150    DOI: 10.11901/1005.3093.2023.097
  研究论文 本期目录 | 过刊浏览 |
等离子体氟改性TiO2 催化剂的制备及其光催化性能
周立臣()
中海石油(中国)有限公司湛江分公司 湛江 524000
Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater
ZHOU Lichen()
Zhanjiang Branch of CNOOC (China) Co., Ltd., Zhanjiang 524000, China
引用本文:

周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
Lichen ZHOU. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. Chinese Journal of Materials Research, 2024, 38(2): 141-150.

全文: PDF(5890 KB)   HTML
摘要: 

以C2H2F4为F源,用等离子体放电对TiO2实现F改性制备TiO2催化剂,并使用XRD、XPS、UV-vis、PL等手段表征其形貌和结构。以亚甲基蓝和油田废水作为污染物,研究外部环境对催化剂降解性能的影响和重复使用性能,并使用自由基清除剂揭示其光催化机理。结果表明,催化剂添加量为8 g/L、pH值为6时,其对油田废水的降解效果最佳化学需氧量(COD)的去除率可达88%。同时,环境中的$\mathrm{HCO}_3^{-}$、$\mathrm{CO}_3^{2-}$、$\mathrm{PO}_4^{3-}$、$\mathrm{SiO}_3^{2-}$能显著抑制光催化反应,而Cl-的影响不大。羟基自由基(·OH)对光催化反应的影响更为关键。等离子体氟改性后,二氧化钛表面产生大量的≡Ti-F键和氧缺陷,实现了TiO2的间隙F掺杂(Ti-O-F-Ti键),≡Ti-F和氧缺陷促进了光生电子-空穴向TiO2表面转移。同时,间隙F掺杂在TiO2价带上方产生杂质能级,使禁带宽度从2.98 eV收窄到2.82 eV,增强了这种催化剂在可见光区域的吸收,提高了其对油田废水的光催化降解效率。

关键词 无机非金属材料工业催化油田废水等离子体TiO2光催化    
Abstract

The florine modification of titanium dioxide was realized by plasma discharge technique with C2H2F4 as F source, and the morphology and structure of the catalyst were characterized by XRD, XPS, UV-vis, PL, etc. The effectiveness of fluorine-modified titanium dioxide catalyst was studied in terms of the degradation of methylene blue and oilfield wastewater, and the corresponding influencing factors as well as the reusability of the catalyst were investigated. The results showed that for the corrosive medium of pH 6 with the addition of 8 g/L catalyst, the best degradation effect on oilfield wastewater was acquired with the COD removal rate up to 88%. For the corrosive medium with the presence of $\mathrm{HCO}_3^{-}$、$\mathrm{CO}_3^{2-}$、$\mathrm{PO}_4^{3-}$, and $\mathrm{SiO}_3^{2-}$, the photocatalytic induced reaction would be significantly inhibited, while Cl- had little effect on it. Besides, the hydroxyl radical (·OH) was more critical for the photocatalytic related reaction. It follows that after plasma induced fluorine modification, a large number of ≡Ti-F bond and oxygen defects could be produced on the surface of titanium dioxide, achieving fluorine dopped TiO2 gaps (Ti-O-F-Ti bond), in turn, the ≡Ti-F and oxygen defects can promote the transfer of photogenerated electron-holes to the surface of titanium dioxide, meanwhile, the fluorine dopped TiO2 gaps caused a hybrid valence band of titanium dioxide, consequently narrowing the band gap width from 2.98 eV to 2.82 eV, which can enhance the absorption of the catalyst in the visible light region and improve the photocatalytic degradation efficiency of oilfield wastewater.

Key wordsinorganic non-metallic materials    industrial catalysis    oilfield wastewater    plasma    titanium dioxide photocatalysis
收稿日期: 2023-01-13     
ZTFLH:  O649.4  
基金资助:国家重点研发计划(2019YFA0708302)
通讯作者: 周立臣,高级工程师,zhoulichen558@163.com,研究方向为石油化工材料
Corresponding author: ZHOU Lichen, Tel: 13413680165, E-mail: zhoulichen558@163.com
作者简介: 周立臣,男,1974年生,本科
Preparation methodF sourceMaterialDegradation objectDegradation rate
Sol gel methodNH4FF-TiO2[31]Methyl orange91.12%
Sol gel methodHFN,F-TiO2[32]Acid red B100%
Steam heating methodHFCu/F-TiO2[33]Cationic blue99.8%
Sol gel methodNH4FF0.2-TiO2[34]Methyl orange97%
Precipitation-sol-hydrothermal crystallization methodNH4FF-TiO2[35]Rhodamine B83%
Photothermal methodHFF-TiO2[36]--
Sol gel methodNH4FN/F-TiO2[37]--
Sol gel methodNH4FF-TO2@MAC [38]X-3B99.8%
Sol gel methodNH4FN, F-TiO2[39]C8H14ClN586%
表1  F改性TiO2的研究现状
图1  TiO2催化剂的制备过程
图2  等离子体F改性TiO2催化剂的制备过程
图3  TiO2催化剂的XRD谱
图4  DBD-F-TiO2催化剂的SEM、TEM照片以及HRTEM图和电子衍射谱
图5  DBD-F-TiO2和TiO2的全谱以及DBD-F-TiO2催化剂的F 1s高分辨谱、Ti 2p高分辨谱、O 1s高分辨谱和C 1s高分辨谱
图6  DBD-F-TiO2和TiO2的FT-IR谱
图7  DBD-F-TiO2和TiO2的UV-vis光谱以及 (αhv)1/2与(hv)的关系
图8  DBD-F-TiO2和TiO2的荧光光谱
图9  催化剂对亚甲基蓝溶液的降解率以及DBD-F-TiO2与TiO2体系对油田废水的COD去除率
图10  催化剂的加量对油田废水COD去除率的影响
图11  pH值对油田废水COD去除率的影响
图12  阴离子类型对油田废水COD去除率的影响
图13  催化剂的重复使用性能以及DBD-F-TiO2/3和DBD-F-TiO2/5催化剂的F1s高分辨谱
图14  自由基捕获实验和光催化机理
1 Huang Y, Yu G Y. Study and application on high effective treatment technology of operation wastewater in oilfield [J]. Chem. Eng. Oil Gas, 2020, 49(3): 138
1 黄 勇, 于冠宇. 高效处理油田作业废水技术的研究及应用 [J]. 石油与天然气化工, 2020, 49(3): 138
2 Dong Z Y, Lu M, Huang W H, et al. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier [J]. J. Hazard. Mater., 2011, 196: 123
doi: 10.1016/j.jhazmat.2011.09.001 pmid: 21925792
3 Leshuk T, Wong T, Linley S, et al. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water [J]. Chemosphere, 2016, 144: 1854
doi: 10.1016/j.chemosphere.2015.10.073 pmid: 26539710
4 King S M, Leaf P A, Olson A C, et al. Photolytic and photocatalytic degradation of surface oil from the Deepwater Horizon spill [J]. Chemosphere, 2014, 95: 415
doi: 10.1016/j.chemosphere.2013.09.060 pmid: 24139429
5 Ye L Q, Jin X L, Liu C, et al. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels [J]. Appl. Catal., 2016, 187B: 281
6 Wang S H, Yang M, Zhang Y, et al. Detection of left-sided and right-sided hearing loss via fractional Fourier transform [J]. Entropy, 2016, 18(5): 194
doi: 10.3390/e18050194
7 Gnayem H, Sasson Y. nanostructuredHierarchical 3D flowerlike BiOCl x Br1 - x semiconductors with exceptional visible light photocatalytic activity [J]. ACS Catal., 2013, 3(2): 186
doi: 10.1021/cs3005133
8 Henríquez A, Mansilla H D, Martínez-de la Cruz A M, et al. Selective oxofunctionalization of cyclohexane over titanium dioxide-based and bismuth oxyhalide (BiO X, X = Cl-, Br-, I-) photocatalysts by visible light irradiation [J]. Appl. Catal., 2017, 206B: 252
9 Cui Z G, Li H, Wang Z T. The progress of the wastewater treatment by micro-electrolysis technology [J]. Shandong Chem. Ind., 2009, 38(4): 21
9 崔志刚, 李 浩, 王宗廷. 微电解法处理废水研究进展 [J]. 山东化工, 2009, 38(4): 21
10 Li S F, Huang Y L, Zhou M. Research status and prospect of film separation technology for oilfield wastewater treatment [J]. Chem. Eng., 2022, 36(7): 63
10 李仕芳, 黄治梁, 周 密. 膜分离技术处理油田废水研究现状及展望 [J]. 化学工程师, 2022, 36(7): 63
11 Han B L, Li J L, Zhou C H, et al. Research on a honeycombed micro-electrolysis reactor based on flow improvement and its application in oil field wastewater treatment [J]. Chem. Eng. Oil Gas, 2018, 47(5): 100
11 韩本利, 李甲亮, 周春海 等. 基于流态改进的仓式微电解反应器处理油田废水研究 [J]. 石油与天然气化工, 2018, 47(5): 100
12 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37
doi: 10.1038/238037a0
13 Wang Y C, Liu X Y, Wang X X, et al. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion [J]. Chem. Eng. J., 2021, 419: 129459
doi: 10.1016/j.cej.2021.129459
14 Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications [J]. Angew. Chem. Int. Ed., 2011, 50(13): 2904
doi: 10.1002/anie.v50.13
15 Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal., 2004, 265A(1) : 115
16 Li J X. Study on the treatment of organic compounds in oilfield wastewater by Cu2+/ZnO/TiO2 composite photocatalyst [D]. Xi'an: Northwest University, 2020
16 李佳星. Cu2+/ZnO/TiO2复合光催化剂处理油田废水中有机物研究 [D]. 西安: 西北大学, 2020
17 Wang W, Liu J C, Huo W C, et al. Adsorption-photocatalytic degradation of oilfield wastewater by C-doped diatomite@TiO2 catalyst [J]. Mater. Rep., 2020, 34(23): 23027
17 王 薇, 刘竟成, 霍旺晨 等. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水 [J]. 材料导报, 2020, 34(23): 23027
18 Jiao Y R, Liu D, Qiao Y X, et al. Preparation and application of TiO2/MoS2 photocatalyst in oilfield wastewater treatment [J]. Sci. Technol. Chem. Ind., 2020, 28(6): 13
18 焦玉荣, 刘 丹, 乔赟轩 等. 复合材料TiO2/MoS2的制备及对油田废水处理 [J]. 化工科技, 2020, 28(6): 13
19 Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2 - x Se core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal. B, 2017, 209B: 110
20 Chai Y C, Lin L, Zhao B, et al. Recent progress on rare earth elements doped nano-titanium dioxide photocatalysts [J]. Mater. Rep., 2013, 27(1): 38
20 柴瑜超, 林 琳, 赵 斌 等. 稀土掺杂二氧化钛光催化剂的研究进展 [J]. 材料导报, 2013, 27(1): 38
21 Zhang J L, Zhao W J, Chen H J, et al. Study of loaded photocatalysts by precious metals on the photocatalytic reactivity [J]. Acta Phys. Chim. Sin., 2004, 20(4): 424
doi: 10.3866/PKU.WHXB20040420
21 张金龙, 赵文娟, 陈海军 等. 负载贵金属光催化剂的光催化活性研究 [J]. 物理化学学报, 2004, 20(4): 424
22 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
22 彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
23 Ren T Q, Zhang B, Sun Y, et al. Preparation of TiO2/ZnO composite photocatalyst and its photocatalytic performance [J]. Speciality Petrochemicals, 2015, 32(5): 1
23 任铁强, 张 冰, 孙 悦 等. TiO2/ZnO复合光催化剂的制备及其光催化性能研究 [J]. 精细石油化工, 2015, 32(5): 1
24 Park J S, Choi W. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2 [J]. Langmuir, 2004, 20(26): 11523
pmid: 15595779
25 Matouk Z, Torriss B, Rincón R, et al. Functionalization of cellulose nanocrystal films using Non-Thermal atmospheric -Pressure plasmas [J]. Appl. Surf. Sci., 2020, 511: 145566
doi: 10.1016/j.apsusc.2020.145566
26 Jia C X, Wang Q, Chen P, et al. Surface adhesive properties of continuous PBO fiber after air-plasma-grafting-epoxy treatment [J]. J. Cent. South Univ., 2016, 23(9): 2165
doi: 10.1007/s11771-016-3273-z
27 Meng X M, Ma Z, Ma G Q, et al. Preparation and rheological study of pentaerythritol triacrylate grafted onto polypropylene induced by air plasma [J]. J. Appl. Polym. Sci., 2019, 136(42): 48054
doi: 10.1002/app.v136.42
28 Di L B, Xu Z J, Wang K, et al. A facile method for preparing Pt/TiO2 photocatalyst with enhanced activity using dielectric barrier discharge [J]. Catal. Today, 2013, 211: 109
doi: 10.1016/j.cattod.2013.03.025
29 Wang J, Sun Y B, Feng J W, et al. Degradation of triclocarban in water by dielectric barrier discharge plasma combined with TiO2/activated carbon fibers: effect of operating parameters and byproducts identification [J]. Chem. Eng. J., 2016, 300: 36
doi: 10.1016/j.cej.2016.04.041
30 Seo H K, Elliott C M, Shin H S. Mesoporous TiO2 films fabricated using atmospheric pressure dielectric barrier discharge jet [J]. ACS Appl. Mater. Interfaces, 2010, 2(12): 3397
doi: 10.1021/am100731w
31 Zhang L Y, Tu Q M, You Y H, et al. Preparation of F- doped TiO2 and its photocatalytic degradation performance on methyl orange [J]. J. Synth. Cryst., 2018, 47(11): 2408
31 张理元, 涂秋梅, 由耀辉 等. F-掺杂TiO2制备及光降解甲基橙性能研究 [J]. 人工晶体学报, 2018, 47(11): 2408
32 Wang L T, Li F Y, Zhang Z H, et al. Preparation of N, F-codoped TiO2 and its photocatalytic activity under visible light [J]. Acta Sci. Circumst., 2013, 33(3): 742
32 王丽涛, 李芳轶, 张朝红 等. 氮氟掺杂二氧化钛(N,F-TiO2)的制备及可见光催化活性的研究 [J]. 环境科学学报, 2013, 33(3): 742
33 Chen Z Y, Chen Y B, Li Q, et al. Preparation of fluorine and copper co-doping TiO2 hollow microspheres and its visible light photocatalytic performance [J]. Chin. J. Nonferrous Met., 2017, 27(8): 1643
33 陈赞宇, 陈艳波, 李 强 等. 氟铜共掺杂TiO2空心微球的制备及可见光催化性能 [J]. 中国有色金属学报, 2017, 27(8): 1643
34 Wang H X, Li X X, Tang L, et al. Preparation and photocatalytic property of f-modified TiO2 [J]. J. Synth. Cryst., 2019, 48(6): 1072
34 王红侠, 李新星, 汤 亮 等. 氟改性TiO2的制备及光催化性能研究 [J]. 人工晶体学报, 2019, 48(6): 1072
35 Huang D G, Liao S J, Dang Z. Preparation, characterization and photocatalytic performance of anatase F doped TiO2 sol [J]. Acta Chim. Sin., 2006, 64(17): 1805
35 黄冬根, 廖世军, 党 志. 氟掺杂锐钛矿型TiO2溶胶的制备、表征及催化性能 [J]. 化学学报, 2006, 64(17): 1805
36 Qin H, Lin W, Zhang Z C, et al. Synthesis of F-TiO2 nanosheets and its photocatalytic oxidation of benzene to phenol [J]. Adv. Mater. Res., 2013, 750-752: 1160
37 Shabalina A, Fakhrutdinova E, Chen Y W, et al. Preparation of gold-modified F,N-TiO2 visible light photocatalysts and their structural features comparative analysis [J]. J. Sol-Gel Sci. Technol., 2015, 75(3): 617
doi: 10.1007/s10971-015-3732-2
38 Lin X X, Ji X, Fu D G, et al. Photocatalytic properties of magnetic activated carbon supported F-doped TiO2 [J]. J. Inorg. Mater., 2013, 28(9): 997
doi: 10.3724/SP.J.1077.2013.12671
38 林晓霞, 吉 翔, 付德刚 等. 磁性活性碳负载F掺杂纳米二氧化钛的光催化性质研究 [J]. 无机材料学报, 2013, 28(9): 997
39 Samsudin E M, Abd Hamid S B, Juan J C, et al. Enhancement of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by doping with N,F [J]. Chem. Eng. J., 2015, 280: 330
doi: 10.1016/j.cej.2015.05.125
40 Lang J H, Takahashi K, Kubo M, et al. Ag-doped TiO2 composite films prepared using aerosol-assisted, plasma-enhanced chemical vapor deposition [J]. Catalysts, 2022, 12(4): 365
doi: 10.3390/catal12040365
41 Hou C T, Kong X H. Preparation and characterization of TiO2-TiOF2 photocatalyst [J]. Environ. Prot. Chem. Ind., 2022, 42(2): 203
41 侯晨涛, 孔祥辉. TiO2-TiOF2光催化剂的制备及其性能表征 [J]. 化工环保, 2022, 42(2): 203
doi: 10.3969/j.issn.1006-1878.2022.02.013
42 Su Q Z, Han Q Z, Gao J H, et al. Modification of the photocatalytic properties of anatase TiO2 (101) surface by doping transition metals [J]. Acta Phys. Sin., 2017, 66(6): 067101
42 苏巧智, 韩清珍, 高锦花 等. 过渡金属掺杂锐钛矿TiO2(101)表面的改性 [J]. 物理学报, 2017, 66(6): 067101
43 Wu H M, Ma J Z, Li Y B, et al. Photocatalytic oxidation of gaseous ammonia over fluorinated TiO2 with exposed (001) facets [J]. Appl. Catal., 2014, 152-153B: 82
44 Song M G, Wang Y S, Guo Y, et al. Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO2 [J]. Chin. J. Catal., 2017, 38(7): 1155
doi: 10.1016/S1872-2067(17)62848-1
44 宋明光, 王筠松, 郭 耘 等. 改性二氧化钛负载贵金属Ru催化剂催化降解苯胺溶液 [J]. 催化学报, 2017, 38(7): 1155
doi: 10.1016/S1872-2067(17)62848-1
45 Qi K Z, Liu S Y, Qiu M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects [J]. Chin. J. Catal., 2018, 39(4): 867
doi: 10.1016/S1872-2067(17)62999-1
45 戚克振, 刘书源, 仇 萌. 无缺陷和氧缺陷二氧化钛的光催化活性 (英文) [J]. 催化学报, 2018, 39(4): 867
doi: 10.1016/S1872-2067(17)62999-1
46 Wang Q J, Cui Y, Huang R J, et al. A heterogeneous Fenton reaction system of N-doped TiO2 anchored on sepiolite activates peroxymonosulfate under visible light irradiation [J]. Chem. Eng. J., 2020, 383: 123142
doi: 10.1016/j.cej.2019.123142
47 Huang D G, Liao S J, Quan S Q, et al. Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process [J]. J. Non-Cryst. Solids, 2008, 354(33): 3965
doi: 10.1016/j.jnoncrysol.2008.05.026
48 Iihoshi T, Ohwaki T, Vequizo J J M, et al. Improvement of photocatalytic activity under visible-light irradiation by heterojunction of Cu ion loaded WO3 and Cu ion loaded N-TiO2 [J]. Appl. Catal., 2019, 248B: 249
49 He Y G, Yan Q, Liu X F, et al. Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant {001} facets [J]. J. Photochem. Photobiol., 2020, 393A: 112400
50 Biswas A, Chakraborty A, Jana N R. Nitrogen and fluorine codoped, colloidal TiO2 nanoparticle: tunable doping, large red-shifted band edge, visible light induced photocatalysis, and cell death [J]. ACS Appl. Mater. Interfaces, 2018, 10(2): 1976
doi: 10.1021/acsami.7b14025
51 Zhang P H, Li Y C, Liu D, et al. Photocatalytic activity of TiO2 photocatalyst Co-doped with indium and X(X = B, Ce) [J]. J. Funct. Mater., 2022, 53(6): 6112
51 张鹏会, 李艳春, 刘 东 等. In, X(X = B, Ce)共掺杂TiO2光催化活性研究 [J]. 功能材料, 2022, 53(6): 6112
doi: 10.3969/j.issn.1001-9731.2022.06.016
52 Wang L P, Meng Y F, Zhao L Z. Photocatalytic oxidation degradation study for operation wastewater treatment in oil field [J]. Chem. Eng. Oil Gas, 2004, 33(4): 290
52 万里平, 孟英峰, 赵立志. 油田作业废水光催化氧化降解研究 [J]. 石油与天然气化工, 2004, 33(4): 290
53 Zhao H, Liu X, Cao Z, et al. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes [J]. J. Hazard. Mater., 2016, 310: 235
doi: 10.1016/j.jhazmat.2016.02.045 pmid: 26937870
54 Tsitonaki A, Petri B, Crimi M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review [J]. Crit. Rev. Environ. Sci. Technol., 2010, 40(1): 55
doi: 10.1080/10643380802039303
[1] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
[11] 董哲瑄, 陈平, 刘兴达. 等离子体处理对CF/PI复合材料高温界面性能的影响[J]. 材料研究学报, 2023, 37(12): 900-906.
[12] 孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.
[13] 王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.