Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (2): 130-140    DOI: 10.11901/1005.3093.2023.169
  研究论文 本期目录 | 过刊浏览 |
GCr15轴承钢时效过程碳化物的演化行为
刘震寰1,2, 李勇翰1,2, 刘洋1(), 王培1, 李殿中1
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process
LIU Zhenhuan1,2, LI Yonghan1,2, LIU Yang1(), WANG Pei1, LI Dianzhong1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
Zhenhuan LIU, Yonghan LI, Yang LIU, Pei WANG, Dianzhong LI. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. Chinese Journal of Materials Research, 2024, 38(2): 130-140.

全文: PDF(23309 KB)   HTML
摘要: 

对GCr15轴承钢进行170℃时效处理,使用SEM、TEM、XRD等手段对其表征,研究了这种钢在时效过程中碳化物的演化行为及其对性能的影响。结果表明,在840℃淬火后再在230℃回火,钢的硬度不低于59 HRC,冲击韧性大幅度提高,钢中的残余奥氏体基本上消除,可保障其170℃的性能和尺寸稳定性。在时效过程中发生的碳原子配分和碳化物析出,使钢基体中碳的浓度、晶格畸变、微区应力应变先降低后稳定,过渡碳化物向非共格的渗碳体转变和粗化。这两个因素的耦合作用使钢的硬度降低、冲击韧性先升高后降低。马氏体的碳脱溶和碳化物类型的转变相互协调,使钢时效1000 h到2000 h间硬度有所回升。为了提高时效过程中钢的显微组织和性能的稳定性,淬火后又进行了深冷处理以引入高密度缺陷,促进了回火和时效过程中碳元素的配分,使析出的碳化物细小弥散并抑制了其在时效过程中的长大与粗化。深冷处理使碳化物的长大速率由298 nm3/h降低到229.5 nm3/h,在一定程度上延缓了性能的衰退、提高了GCr15轴承钢在真空干泵高温环境中的性能稳定性。

关键词 金属材料GCr15钢时效处理冲击韧性深冷处理碳化物演变    
Abstract

The evolution behavior of carbides in GCr15 bearing steel and its influence on the impact toughness during long-term aging at 170oC have been investigated by means of SEM, TEM, and XRD, aiming to meet the requirements of vacuum dry pump bearings. The results demonstrate that after quenching at 840oC and the tempering at 230oC, the hardness of GCr15 steel remains above 59 HRC with minimal retained austenite, which is favorable to the enhancement of performance and dimensional stability for the steel at 170oC. During the aging process, carbon atom partitioning and carbide precipitation lead to a decrease in carbon concentration, lattice distortion and micro-zone stress strain of the matrix, while transitional carbides precipitate, coarsen and then transform into non-coherent cementite. The resultant effect of these microstructural variation is a reduction in material hardness, while the impact toughness initially increasing and then decreasing. However, the cooperative effect of the decarbonization of martensite and carbide type transformation makes hardness of steels remain stable or even increase a little in between 1000 h and 2000 h during the aging process. To improve the microstructure and performance stability during the aging process, cryogenic treatment was conducted after quenching. The introduction of high-density defects promotes effective carbon distribution during tempering and aging, which gives rise to uniform distribution and size control of fine carbides. Cryogenic treatment reduces the carbide growth rate from 298 nm3/h to 229.5 nm3/h, which delays the performance decline effectively and makes the GCr15 bearing steel satisfied with demands of vacuum dry pump bearings.

Key wordsmetallic materials    GCr15    aging treatment    Impact toughness    cryogenic treatment    carbide evolution
收稿日期: 2023-03-09     
ZTFLH:  TG161  
基金资助:中国科学院区域重点项目A类(KFJ-STS-QYZD-2021-20-002)
通讯作者: 刘洋,副研究员,yangliu@imr.ac.cn,研究方向为高品质特殊钢中非金属夹杂物和碳化物的表征与控制
Corresponding author: LIU Yang, Tel: (024)83971973, E-mail: yangliu@imr.ac.cn
作者简介: 刘震寰,男,1998年生,硕士生
CCrMnSiAlSTiCaHNOFe
1.021.580.440.260.0160.00130.00130.00030.00010.0010.0003Bal.
表1  实验用钢的化学成分
SampleQuenchingCryogenic treatmentTempering
#0740oC × 30 min + 840oC × 30 min + oil quenching-160oC × 120 min
#1740oC × 30 min + 840oC × 30 min + oil quenching-80oC × 120 min230oC × 120 min
#2740oC × 30 min + 840oC × 30 min + oil quenching-230oC × 120 min
表2  样品的编号及其热处理工艺
Diffraction crystal planes of martensiteAustenite diffraction crystallineG
(200)M(200) γ2.46
(220) γ1.32
(311) γ1.78
(211)M(200) γ1.21
(220) γ0.65
(311) γ0.87
表3  不同晶面的衍射强度因子之比
图1  不同热处理工艺样品的典型组织形貌
HardnessImpact toughnessRetained austenite
#061.0 HRC101 J11%
#159.9 HRC187 J< 1%
#259.2 HRC210 J< 1%
表4  不同工艺处理后的硬度、冲击功和残余奥氏体含量
图2  时效不同时间样品的微观组织TEM明场像
图3  工艺1、2样品时效过程的XRD谱
图4  工艺1、2样品时效过程马氏体的碳含量
Aging time / h010002000300040005000
Process 1 / 1016 m-21.982.031.691.771.571.50
Process 2 / 1016 m-21.901.651.051.351.111.21
表5  工艺1、2样品时效过程位错的密度
图5  不同工艺样品时效不同时间后的冲击功和硬度变化趋势
图6  工艺1样品时效前后碳化物的TEM明场像和SEAD谱
图7  时效不同时间样品二次裂纹的SEM照片
图8  时效后期冲击裂纹起源的SEM照片
图9  工艺1、2处理后样品的微观结构形貌
图10  工艺1、2处理后的GCr15的微观组织
Aging time / h010002000300040005000
Process 1126.8131.5136.0138.5144.1147.9
Process 2129.8135140.3145.5151.3153.6
表6  时效不同时间后样品中碳化物平均尺寸 (nm)
图11  深冷处理对碳化物分布、尺寸的影响
图12  在170℃时效过程中针状碳化物的平均长度与时间的关系
1 Vetters H, Dong J, Bomas H, et al. Microstructure and fatigue stre-ngth of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic-martensitic heat treatment [J]. Int. J. Mater. Res., 2006, 97(10): 1432
doi: 10.3139/146.101388
2 Zhang J W, Shiozawa K, Lu L T, et al. Fatigue fracture behavior of bearing steel GCr15 in very high cycle regime [C]. Advanced Materials Research. Trans Tech Publications Ltd, 2008, 44: 119
3 Senda K. The effects of heat treatment on the bending strength of high carbon chromium steel [J]. Materials Transactions, JIM, 1962, 3(3): 173
4 Heidenreich R D, Sturkey L, Woods H L. Investigation of secondary phases in alloys by electron diffraction and the electron microscope [J]. J. Appl. Phys., 1946, 17(2): 127
5 Jack K H, Wild S. Nature of χ-carbide and its possible occurrence in steels [J]. Nature, 1966, 212: 248
6 Perez M, Sidoroff C, Vincent A, et al. Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: From thermoelectric power measurements to the prediction of dimensional changes [J]. Acta Mater., 2009, 57(11): 3170
doi: 10.1016/j.actamat.2009.03.024
7 Jung M, Lee S J, Lee Y K. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel [J]. Metall. Mater. Trans. A, 2009, 40: 551
doi: 10.1007/s11661-008-9756-2
8 Nagakura S, Hirotsu Y, Kusunoki M, et al. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction [J]. Metall. Trans. A, 1983, 14: 1025
doi: 10.1007/BF02659851
9 Speich G R, Leslie W C. Tempering of steel [J]. Mater. Trans., 1972, 3: 1043
10 Caballero F G, García-Mateo C, de Andrés C G. Dilatometric study of reaustenitisation of high silicon bainitic steels: Decomposition of retained austenite [J]. Mater. Trans., 2005, 46(3): 581
doi: 10.2320/matertrans.46.581
11 Beswick J M. Fracture and fatigue crack propagation properties of hardened 52100 steel [J]. Metall. Trans. A, 1989, 20: 1961
doi: 10.1007/BF02650283
12 Li S, Xiao M, Ye G, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging [J]. Mater. Sci. Eng. A, 2018, 732: 167
doi: 10.1016/j.msea.2018.07.012
13 Barrow A T W, Kang J H, Rivera-Díaz-del-Castillo P E J. The ϵηθ transition in 100Cr6 and its effect on mechanical properties [J]. Acta Mater., 2012, 60(6-7): 2805
doi: 10.1016/j.actamat.2012.01.046
14 Wu Y, Qin X, Wang C, et al. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60: 61
doi: 10.1016/j.jmst.2020.06.005
15 Lee H M, Allen S M, Grujicic M. Coarsening resistance of M2C carbides in secondary hardening steels: Part I. Theoretical model for multicomponent coarsening kinetics [J]. Metall. Trans. A, 1991, 22: 2863
doi: 10.1007/BF02650247
16 Hu Z F, Wu X F, Wang C X. Coarsening kinetics of multi-component M2C precipitates in secondary hardening alloy steels [J]. Acta. Metall. Sin., 2003, 39(6): 585
16 胡正飞, 吴杏芳, 王春旭. 二次硬化合金钢中多组元强化相 M2C碳化物的粗化动力学研究 [J]. 金属学报, 2003, 39(6): 585
17 Xiao L, Fan Z, Jinxiu Z, et al. Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study [J]. Phys. Rev. B, 1995, 52(14): 9970
pmid: 9980042
18 Hirotsu Y, Nagakura S. Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering [J]. Acta Mater., 1972, 20(4): 645
doi: 10.1016/0001-6160(72)90020-X
19 Thompson S W. Structural characteristics of transition-iron-carbide precipitates formed during the first stage of tempering in 4340 steel [J]. Mater. Charact., 2015, 106: 452
doi: 10.1016/j.matchar.2015.05.030
20 Williamson D L, Nakazawa K, Krauss G. A study of the early stages of tempering in an Fe-1.2 Pct alloy [J]. Metall. Trans. A, 1979, 10: 1351
doi: 10.1007/BF02811991
21 Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15(1): 30
doi: 10.1179/026708399773002782
22 Calliari I, Breda M, Ramous E, et al. Impact toughness of an isothermally treated Zeron® 100 SDSS [J]. J. Mater. Eng. Perform., 2012, 21: 2117
doi: 10.1007/s11665-012-0138-y
23 Deng X T, Fu T L, Wang Z D, et al. Epsilon carbide precipitation and wear behaviour of low alloy wear resistant steels [J]. Mater. Sci. Technol., 2016, 32(4): 320
doi: 10.1080/02670836.2015.1137410
24 Jiang B, Wu M, Zhang M, et al. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters [J]. Mater. Sci. Eng. A, 2017, 707: 306
doi: 10.1016/j.msea.2017.09.062
25 Zheng Y, Wang F, Li C, et al. Microstructural evolution, coarsening behavior of precipitates and mechanical properties of boron bearing steel 25CrMoNbB during tempering [J]. Mater. Sci. Eng. A, 2018, 712: 453
doi: 10.1016/j.msea.2017.11.115
26 Li H F, Duan Q Q, Zhang P, et al. The Relationship between Strength and Toughness in Tempered Steel: Trade‐Off or Invariable? [J]. Adv. Eng. Mater., 2019, 21(4): 1801116
doi: 10.1002/adem.v21.4
27 Samuel F H, Hussein A A. Tempering of medium-and high-carbon martensites [J]. Mater. Charact., 1982, 15(4): 391
28 Taylor K A, Olson G B, Cohen M, et al. Carbide precipitation during stage I tempering of Fe-Ni-C martensites [J]. Metall. Trans. A, 1989, 20: 2749
doi: 10.1007/BF02670168
29 Hou Z, Babu R P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel [J]. J. Mater. Sci., 2019, 54(12): 9222
doi: 10.1007/s10853-019-03530-8
30 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19(1-2): 35
doi: 10.1016/0022-3697(61)90054-3
31 Tiley J, Viswanathan G B, Srinivasan R, et al. Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT [J]. Acta Mater., 2009, 57(8): 2538
doi: 10.1016/j.actamat.2009.02.010
32 Moshtaghin R S, Asgari S. Growth kinetics of γ′ precipitates in superalloy IN-738LC during long term aging [J]. Mater. Des., 2003, 24(5): 325
doi: 10.1016/S0261-3069(03)00061-X
[1] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[4] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[5] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[10] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[11] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[12] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[14] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[15] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.