|
|
GCr15轴承钢时效过程碳化物的演化行为 |
刘震寰1,2, 李勇翰1,2, 刘洋1( ), 王培1, 李殿中1 |
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process |
LIU Zhenhuan1,2, LI Yonghan1,2, LIU Yang1( ), WANG Pei1, LI Dianzhong1 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
Zhenhuan LIU,
Yonghan LI,
Yang LIU,
Pei WANG,
Dianzhong LI.
Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. Chinese Journal of Materials Research, 2024, 38(2): 130-140.
1 |
Vetters H, Dong J, Bomas H, et al. Microstructure and fatigue stre-ngth of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic-martensitic heat treatment [J]. Int. J. Mater. Res., 2006, 97(10): 1432
doi: 10.3139/146.101388
|
2 |
Zhang J W, Shiozawa K, Lu L T, et al. Fatigue fracture behavior of bearing steel GCr15 in very high cycle regime [C]. Advanced Materials Research. Trans Tech Publications Ltd, 2008, 44: 119
|
3 |
Senda K. The effects of heat treatment on the bending strength of high carbon chromium steel [J]. Materials Transactions, JIM, 1962, 3(3): 173
|
4 |
Heidenreich R D, Sturkey L, Woods H L. Investigation of secondary phases in alloys by electron diffraction and the electron microscope [J]. J. Appl. Phys., 1946, 17(2): 127
|
5 |
Jack K H, Wild S. Nature of χ-carbide and its possible occurrence in steels [J]. Nature, 1966, 212: 248
|
6 |
Perez M, Sidoroff C, Vincent A, et al. Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: From thermoelectric power measurements to the prediction of dimensional changes [J]. Acta Mater., 2009, 57(11): 3170
doi: 10.1016/j.actamat.2009.03.024
|
7 |
Jung M, Lee S J, Lee Y K. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel [J]. Metall. Mater. Trans. A, 2009, 40: 551
doi: 10.1007/s11661-008-9756-2
|
8 |
Nagakura S, Hirotsu Y, Kusunoki M, et al. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction [J]. Metall. Trans. A, 1983, 14: 1025
doi: 10.1007/BF02659851
|
9 |
Speich G R, Leslie W C. Tempering of steel [J]. Mater. Trans., 1972, 3: 1043
|
10 |
Caballero F G, García-Mateo C, de Andrés C G. Dilatometric study of reaustenitisation of high silicon bainitic steels: Decomposition of retained austenite [J]. Mater. Trans., 2005, 46(3): 581
doi: 10.2320/matertrans.46.581
|
11 |
Beswick J M. Fracture and fatigue crack propagation properties of hardened 52100 steel [J]. Metall. Trans. A, 1989, 20: 1961
doi: 10.1007/BF02650283
|
12 |
Li S, Xiao M, Ye G, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging [J]. Mater. Sci. Eng. A, 2018, 732: 167
doi: 10.1016/j.msea.2018.07.012
|
13 |
Barrow A T W, Kang J H, Rivera-Díaz-del-Castillo P E J. The ϵ→η→θ transition in 100Cr6 and its effect on mechanical properties [J]. Acta Mater., 2012, 60(6-7): 2805
doi: 10.1016/j.actamat.2012.01.046
|
14 |
Wu Y, Qin X, Wang C, et al. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60: 61
doi: 10.1016/j.jmst.2020.06.005
|
15 |
Lee H M, Allen S M, Grujicic M. Coarsening resistance of M2C carbides in secondary hardening steels: Part I. Theoretical model for multicomponent coarsening kinetics [J]. Metall. Trans. A, 1991, 22: 2863
doi: 10.1007/BF02650247
|
16 |
Hu Z F, Wu X F, Wang C X. Coarsening kinetics of multi-component M2C precipitates in secondary hardening alloy steels [J]. Acta. Metall. Sin., 2003, 39(6): 585
|
16 |
胡正飞, 吴杏芳, 王春旭. 二次硬化合金钢中多组元强化相 M2C碳化物的粗化动力学研究 [J]. 金属学报, 2003, 39(6): 585
|
17 |
Xiao L, Fan Z, Jinxiu Z, et al. Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study [J]. Phys. Rev. B, 1995, 52(14): 9970
pmid: 9980042
|
18 |
Hirotsu Y, Nagakura S. Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering [J]. Acta Mater., 1972, 20(4): 645
doi: 10.1016/0001-6160(72)90020-X
|
19 |
Thompson S W. Structural characteristics of transition-iron-carbide precipitates formed during the first stage of tempering in 4340 steel [J]. Mater. Charact., 2015, 106: 452
doi: 10.1016/j.matchar.2015.05.030
|
20 |
Williamson D L, Nakazawa K, Krauss G. A study of the early stages of tempering in an Fe-1.2 Pct alloy [J]. Metall. Trans. A, 1979, 10: 1351
doi: 10.1007/BF02811991
|
21 |
Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15(1): 30
doi: 10.1179/026708399773002782
|
22 |
Calliari I, Breda M, Ramous E, et al. Impact toughness of an isothermally treated Zeron® 100 SDSS [J]. J. Mater. Eng. Perform., 2012, 21: 2117
doi: 10.1007/s11665-012-0138-y
|
23 |
Deng X T, Fu T L, Wang Z D, et al. Epsilon carbide precipitation and wear behaviour of low alloy wear resistant steels [J]. Mater. Sci. Technol., 2016, 32(4): 320
doi: 10.1080/02670836.2015.1137410
|
24 |
Jiang B, Wu M, Zhang M, et al. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters [J]. Mater. Sci. Eng. A, 2017, 707: 306
doi: 10.1016/j.msea.2017.09.062
|
25 |
Zheng Y, Wang F, Li C, et al. Microstructural evolution, coarsening behavior of precipitates and mechanical properties of boron bearing steel 25CrMoNbB during tempering [J]. Mater. Sci. Eng. A, 2018, 712: 453
doi: 10.1016/j.msea.2017.11.115
|
26 |
Li H F, Duan Q Q, Zhang P, et al. The Relationship between Strength and Toughness in Tempered Steel: Trade‐Off or Invariable? [J]. Adv. Eng. Mater., 2019, 21(4): 1801116
doi: 10.1002/adem.v21.4
|
27 |
Samuel F H, Hussein A A. Tempering of medium-and high-carbon martensites [J]. Mater. Charact., 1982, 15(4): 391
|
28 |
Taylor K A, Olson G B, Cohen M, et al. Carbide precipitation during stage I tempering of Fe-Ni-C martensites [J]. Metall. Trans. A, 1989, 20: 2749
doi: 10.1007/BF02670168
|
29 |
Hou Z, Babu R P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel [J]. J. Mater. Sci., 2019, 54(12): 9222
doi: 10.1007/s10853-019-03530-8
|
30 |
Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19(1-2): 35
doi: 10.1016/0022-3697(61)90054-3
|
31 |
Tiley J, Viswanathan G B, Srinivasan R, et al. Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT [J]. Acta Mater., 2009, 57(8): 2538
doi: 10.1016/j.actamat.2009.02.010
|
32 |
Moshtaghin R S, Asgari S. Growth kinetics of γ′ precipitates in superalloy IN-738LC during long term aging [J]. Mater. Des., 2003, 24(5): 325
doi: 10.1016/S0261-3069(03)00061-X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|