Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 668-674    DOI: 10.11901/1005.3093.2022.352
  研究论文 本期目录 | 过刊浏览 |
碳纤维/环氧复合材料界面改性的不均匀性
王乾1, 蒲磊1, 贾彩霞1(), 李志歆2, 李俊1
1.沈阳航空航天大学航空宇航学院 沈阳 110136
2.中国南方航空股份有限公司 沈阳维修基地 沈阳 110169
Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites
WANG Qian1, PU Lei1, JIA Caixia1(), LI Zhixin2, LI Jun1
1.College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Shenyang Aircraft Maintenance & Overhaul Base, China Southern Airlines Company Limited, Shenyang 110169, China
引用本文:

王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
Qian WANG, Lei PU, Caixia JIA, Zhixin LI, Jun LI. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. Chinese Journal of Materials Research, 2023, 37(9): 668-674.

全文: PDF(6484 KB)   HTML
摘要: 

研究了等离子体表面改性和等离子体接枝改性碳纤维/环氧树脂基复合材料界面的不均匀性。层间剪切强度(ILSS)测量及其偏差评估的结果表明,在相同等离子体条件下,等离子体表面改性对ILSS的提升率只有8.6%,而等离子体接枝改性的提升率高达37%;但是,接枝改性ILSS的离散程度比较高。扫描电镜、金相显微镜和红外光谱分析的结果进一步表明,接枝改性可通过取代反应将较多的活性基团键接在碳纤维表面从而更容易实现界面提升,但是接枝层的不均匀及其产生的纤维粘连使ILSS的离散程度提高。

关键词 材料表面与界面不均匀性等离子体改性离散程度    
Abstract

The effect of plasma surface modification and plasma grafting modification on the inhomogeneity of interfacial properties of the modified carbon fiber/epoxy composites was comparatively studied by means of interlaminar shear strength (ILSS) test, metallography, SEM, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIS) in terms of the relevant affecting factors. Firstly, the interlaminar shear strength (ILSS) of the composites was measured and its variation was evaluated.Results showed that the enhancement rate of ILSS by plasma surface modification was only 8.6%, while that by plasma grafting was 37% by the same plasma treatment conditions. However, compared with the plasma surface modification, the plasma graft modification aggravated the dispersion of ILSS. Then the surface morphology and the adhesion situation to the resin matrix of the carbon fibers modified by the two methods were studied by scanning electron microscope and metallographic microscope, respectively. Fourier transform infrared spectroscopy was used to reveal the chemical reactions on the fiber surface. The results showed that compared with the plasma surface modification, the plasma grafting modification could graft more active groups onto carbon fibers through substitution reaction, which may result in the improvement of interfacial properties. However, due to the inhomogeneity of grafting layer, which may cause the increase of the fiber adhesion and aggregation, thereby the ILSS dispersion of composites after grafting modification was expanded. Therefore, the control of plasma grafting modification on the homogeneity of interfacial property for composites deserves more attention. This study can provide some theoretical guidance for composite interface modification and its homogeneitycontrol.

Key wordssurface and interface in the materials    degree of dispersion    plasma modification    inhomogeneity
收稿日期: 2022-06-28     
ZTFLH:  TB332  
基金资助:中国学位与研究生教育学会重点项目(2020ZDB80);辽宁省教育厅科学研究项目(JYT2020012&JYT2020014)
通讯作者: 贾彩霞,副教授,jiacaixia@sau.edu.cn,研究方向为航空复合材料制造及维修技术
Corresponding author: JIA Caixia, Tel: (024)89723720, E-mail: jiacaixia@sau.edu.cn
作者简介: 王乾,男,1985年生,博士
图1  碳纤维改性及其复合材料的制备过程
Fiber samplesComposite samplesPlasma intensityGrafting concentration
CFCF/EPUntreatedUngrafted
CF-200CF-200/EP200 W/10 min
CF-300CF-300/EP300 W/10 min
CF-400CF-400/EP400 W/10 min
CF-300-1CF-300-1/EP300 W/10 min1%
CF-300-3CF-300-3/EP3%
CF-300-5CF-300-5/EP5%
CF-300-10CF-300-10/EP10%
表1  碳纤维及碳纤维/环氧树脂复合材料试样编号
Composite samplesILSS of the specimens/MPa

AVG

/MPa

AGR

/%

STD

/MPa

No.1No.2No.3No.4No.5
CF/EP53.89955.94856.39656.41057.24256.001.25
CF-200/EP56.42357.04757.54658.18158.24457.52.70.77
CF-300/EP60.19760.61460.93461.08961.27460.88.60.42
CF-400/EP55.75256.03657.44158.42158.47557.22.11.29
表2  不同等离子体处理的复合材料的层间剪切强度
图2  不同接枝浓度改性后ILSS及其偏差的变化
图3  不同处理前后碳纤维的SEM照片
图4  不同改性前后复合材料的金相照片
图5  表面和接枝改性前后碳纤维表面的红外光谱
图6  不同接枝浓度碳纤维的红外光谱
1 Chen S J, Xu Y Y, Wang Z, et al. Combustion characteristics of carbon fiber/epoxy laminates at low heat flux [J]. Chin. J. Mater. Res., 2020, 34: 933
doi: 10.11901/1005.3093.2020.153
1 陈少杰, 徐艳英, 王 志 等. 低热通量下碳纤维/环氧树脂层合板的燃烧特性 [J]. 材料研究学报, 2020, 34: 933
doi: 10.11901/1005.3093.2020.153
2 Xing L Y, Feng Z H, Bao J W, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development [J]. Acta Meter. Compos. Sin., 2020, 37: 2700
2 邢丽英, 冯志海, 包建文 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37: 2700
3 Seo M K, Park S J. Surface characteristics of carbon fibers modified by direct oxyfluorination [J]. J. Colloid Interf. Sci., 2009, 330: 237
doi: 10.1016/j.jcis.2008.10.005
4 He D, Soo V K, Stojcevski F, et al. The effect of sizing and surface oxidation on the surface properties and tensile behaviour of recycled carbon fibre: An end-of-life perspective [J]. Compos. Part A: Appl. Sci. Manuf., 2020, 138: 106072
doi: 10.1016/j.compositesa.2020.106072
5 Felisberto M, Tzounis L, Sacco L, et al. Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites [J]. Compos. Commun., 2017, 3: 33
doi: 10.1016/j.coco.2017.01.003
6 Du T T, Ye Y X, Liu Y F, et al. Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance [J]. Acta Meter. Compos. Sin., 2021, 38: 1435
6 杜婷婷, 叶云霞, 刘远方 等. 纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响 [J]. 复合材料学报, 2021, 38: 1435
7 Vautard F, Fioux P, Vidal L, et al. Influence of the carbon fiber surface properties on interfacial adhesion in carbon fiber-acrylate composites cured by electron beam [J]. Compos. Part A: Appl. Sci. Manuf., 2011, 42: 859
doi: 10.1016/j.compositesa.2011.03.015
8 Zhai Q S, Miao C H, Cui H C, et al. Bonding performance of domestic T800 carbon fiber/high toughness epoxy composite based on surface modification [J]. Acta Meter. Compos. Sin., 2021, 38: 2162
8 翟全胜, 苗春卉, 崔海超 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能 [J]. 复合材料学报, 2021, 38: 2162
9 Choi M H, Jeon B H, Chung I J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites [J]. Polym., 2000, 41: 3243
doi: 10.1016/S0032-3861(99)00532-7
10 Ma X L, Ao Y H, Xiao L H, et al. Effect of surface modification of carbon fiber on friction properties of carbon fiber/phenolic resin matrix composite [J]. Chin. J. Mater. Res., 2015, 29: 101
doi: 10.11901/1005.3093.2014.356
10 马小龙, 敖玉辉, 肖凌寒 等. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响 [J]. 材料研究学报, 2015, 29: 101
doi: 10.11901/1005.3093.2014.356
11 Kang Y, Yan J, Peng C, et al. Study on the ageing effect of alumina/epoxy composites modified by atmospheric plasma jet [J]. Polym. Compos., 2021, 42: 5388
doi: 10.1002/pc.v42.10
12 Yang P J, Yuan J M, He L P, et al. Carbon fibers surface modification and effects on the interfaces between fibers and resin matrices: A review [J]. Mater. Rep., 2017, 31: 129
12 杨平军, 袁剑民, 何丽萍 等. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展 [J]. 材料导报, 2017, 31: 129
13 ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344/D2344M—16[S]. West Conshohocken, PA: ASTM International, 2016
14 Jia C X, Chen P, Liu W, et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure [J]. Appl. Surf. Sci., 2011, 257: 4165
doi: 10.1016/j.apsusc.2010.11.190
15 Jia C X, Chen P, Wang Q, et al. The effect of atmospheric-pressure air plasma discharge power on adhesive properties of aramid fibers [J]. Polym. Compos., 2016, 37: 620
doi: 10.1002/pc.v37.2
16 Vohrer U, Muller M, Oehr C. Glow-discharge treatment for the modification of textile [J]. Surf. Coat. Technol., 1998, 98: 1128
doi: 10.1016/S0257-8972(97)00549-5
17 Wang X, Hu Y, Song L, et al. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS [J]. J. Anal. Appl. Pyrol., 2011, 92: 164
doi: 10.1016/j.jaap.2011.05.006
18 Skoog D A, Leary J J . Priniciples of Instrumental Analysis [M]. Orlando: Harcourt Brace Jovanovich, 1992: 278
19 Braun U, Balabanovich A I, Schartel B, et al. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites [J]. Polym., 2006, 47: 8495
doi: 10.1016/j.polymer.2006.10.022
20 Mertzel E, Kornig J L. Application of FT-IR and NMR to Epoxy Resins [M]. Berlin: Springer-Verlag, 1985: 74
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[3] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[7] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[14] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] 刘福广, 陈胜军, 潘红根, 董鹏, 马英民, 黄杰, 杨二娟, 米紫昊, 王艳松, 雒晓涛. 热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力[J]. 材料研究学报, 2021, 35(4): 313-320.