|
|
碳纤维/环氧复合材料界面改性的不均匀性 |
王乾1, 蒲磊1, 贾彩霞1( ), 李志歆2, 李俊1 |
1.沈阳航空航天大学航空宇航学院 沈阳 110136 2.中国南方航空股份有限公司 沈阳维修基地 沈阳 110169 |
|
Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites |
WANG Qian1, PU Lei1, JIA Caixia1( ), LI Zhixin2, LI Jun1 |
1.College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China 2.Shenyang Aircraft Maintenance & Overhaul Base, China Southern Airlines Company Limited, Shenyang 110169, China |
引用本文:
王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
Qian WANG,
Lei PU,
Caixia JIA,
Zhixin LI,
Jun LI.
Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. Chinese Journal of Materials Research, 2023, 37(9): 668-674.
1 |
Chen S J, Xu Y Y, Wang Z, et al. Combustion characteristics of carbon fiber/epoxy laminates at low heat flux [J]. Chin. J. Mater. Res., 2020, 34: 933
doi: 10.11901/1005.3093.2020.153
|
1 |
陈少杰, 徐艳英, 王 志 等. 低热通量下碳纤维/环氧树脂层合板的燃烧特性 [J]. 材料研究学报, 2020, 34: 933
doi: 10.11901/1005.3093.2020.153
|
2 |
Xing L Y, Feng Z H, Bao J W, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development [J]. Acta Meter. Compos. Sin., 2020, 37: 2700
|
2 |
邢丽英, 冯志海, 包建文 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37: 2700
|
3 |
Seo M K, Park S J. Surface characteristics of carbon fibers modified by direct oxyfluorination [J]. J. Colloid Interf. Sci., 2009, 330: 237
doi: 10.1016/j.jcis.2008.10.005
|
4 |
He D, Soo V K, Stojcevski F, et al. The effect of sizing and surface oxidation on the surface properties and tensile behaviour of recycled carbon fibre: An end-of-life perspective [J]. Compos. Part A: Appl. Sci. Manuf., 2020, 138: 106072
doi: 10.1016/j.compositesa.2020.106072
|
5 |
Felisberto M, Tzounis L, Sacco L, et al. Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites [J]. Compos. Commun., 2017, 3: 33
doi: 10.1016/j.coco.2017.01.003
|
6 |
Du T T, Ye Y X, Liu Y F, et al. Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance [J]. Acta Meter. Compos. Sin., 2021, 38: 1435
|
6 |
杜婷婷, 叶云霞, 刘远方 等. 纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响 [J]. 复合材料学报, 2021, 38: 1435
|
7 |
Vautard F, Fioux P, Vidal L, et al. Influence of the carbon fiber surface properties on interfacial adhesion in carbon fiber-acrylate composites cured by electron beam [J]. Compos. Part A: Appl. Sci. Manuf., 2011, 42: 859
doi: 10.1016/j.compositesa.2011.03.015
|
8 |
Zhai Q S, Miao C H, Cui H C, et al. Bonding performance of domestic T800 carbon fiber/high toughness epoxy composite based on surface modification [J]. Acta Meter. Compos. Sin., 2021, 38: 2162
|
8 |
翟全胜, 苗春卉, 崔海超 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能 [J]. 复合材料学报, 2021, 38: 2162
|
9 |
Choi M H, Jeon B H, Chung I J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites [J]. Polym., 2000, 41: 3243
doi: 10.1016/S0032-3861(99)00532-7
|
10 |
Ma X L, Ao Y H, Xiao L H, et al. Effect of surface modification of carbon fiber on friction properties of carbon fiber/phenolic resin matrix composite [J]. Chin. J. Mater. Res., 2015, 29: 101
doi: 10.11901/1005.3093.2014.356
|
10 |
马小龙, 敖玉辉, 肖凌寒 等. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响 [J]. 材料研究学报, 2015, 29: 101
doi: 10.11901/1005.3093.2014.356
|
11 |
Kang Y, Yan J, Peng C, et al. Study on the ageing effect of alumina/epoxy composites modified by atmospheric plasma jet [J]. Polym. Compos., 2021, 42: 5388
doi: 10.1002/pc.v42.10
|
12 |
Yang P J, Yuan J M, He L P, et al. Carbon fibers surface modification and effects on the interfaces between fibers and resin matrices: A review [J]. Mater. Rep., 2017, 31: 129
|
12 |
杨平军, 袁剑民, 何丽萍 等. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展 [J]. 材料导报, 2017, 31: 129
|
13 |
ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344/D2344M—16[S]. West Conshohocken, PA: ASTM International, 2016
|
14 |
Jia C X, Chen P, Liu W, et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure [J]. Appl. Surf. Sci., 2011, 257: 4165
doi: 10.1016/j.apsusc.2010.11.190
|
15 |
Jia C X, Chen P, Wang Q, et al. The effect of atmospheric-pressure air plasma discharge power on adhesive properties of aramid fibers [J]. Polym. Compos., 2016, 37: 620
doi: 10.1002/pc.v37.2
|
16 |
Vohrer U, Muller M, Oehr C. Glow-discharge treatment for the modification of textile [J]. Surf. Coat. Technol., 1998, 98: 1128
doi: 10.1016/S0257-8972(97)00549-5
|
17 |
Wang X, Hu Y, Song L, et al. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS [J]. J. Anal. Appl. Pyrol., 2011, 92: 164
doi: 10.1016/j.jaap.2011.05.006
|
18 |
Skoog D A, Leary J J . Priniciples of Instrumental Analysis [M]. Orlando: Harcourt Brace Jovanovich, 1992: 278
|
19 |
Braun U, Balabanovich A I, Schartel B, et al. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites [J]. Polym., 2006, 47: 8495
doi: 10.1016/j.polymer.2006.10.022
|
20 |
Mertzel E, Kornig J L. Application of FT-IR and NMR to Epoxy Resins [M]. Berlin: Springer-Verlag, 1985: 74
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|