Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 900-906    DOI: 10.11901/1005.3093.2023.189
  研究论文 本期目录 | 过刊浏览 |
等离子体处理对CF/PI复合材料高温界面性能的影响
董哲瑄1, 陈平1,2(), 刘兴达1
1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024
2.大连理工大学 三束材料改性教育部重点实验室 大连 116024
Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures
DONG Zhexuan1, CHEN Ping1,2(), LIU Xingda1
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

董哲瑄, 陈平, 刘兴达. 等离子体处理对CF/PI复合材料高温界面性能的影响[J]. 材料研究学报, 2023, 37(12): 900-906.
Zhexuan DONG, Ping CHEN, Xingda LIU. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures[J]. Chinese Journal of Materials Research, 2023, 37(12): 900-906.

全文: PDF(5318 KB)   HTML
摘要: 

用氩气电感耦合射频等离子体(ICP)处理碳纤维的表面,研究了改性碳纤维增强聚酰亚胺树脂基复合材料300℃的界面性能。分别使用扫描电子显微镜(SEM)、原子力显微镜(AFM)等手段和测试X光电子能谱(XPS),研究了氩气等离子体处理时间对连续碳纤维改性前后纤维表面的形貌、粗糙度和化学组分的影响,以及碳纤维增强聚酰亚胺树脂基(CF/PI)复合材料的300℃界面强度的变化规律。结果表明,用氩气等离子体处理7 min(最佳时间)后碳纤维表面的形貌变得粗糙,结构凹凸不平,氧含量从11.43%提高到16.28%,极性官能团-C-O-的含量提高到14.37%。纤维表面浸润性的提高使碳纤维与聚酰亚胺树脂基体300℃的层间剪切强度(ILSS)从76 MPa提高到86.2 MPa。

关键词 复合材料等离子体界面强度碳纤维聚酰亚胺复合材料    
Abstract

The interfacial properties of modified carbon fiber reinforced polyimide resin matrix composites at 300℃ were studied by using argon inductively coupled radio-frequency plasma (ICP). Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray electron spectroscopy (XPS) and other analytical test methods were used to systematically study the effects of argon plasma treatment time on the morphology, roughness and chemical composition of fiber surface before and after continuous carbon fiber modification, and the change law of the interface strength of Carbon fiber reinforced polyimide resin matrix (CF/PI) composites at 300℃. The results show that after the optimal time of argon plasma treatment for 7 min, the morphology of the carbon fiber surface becomes rough, the structural characteristics of unevenness appear, the surface oxygen element content increases from 11.43% to 16.28%, the polar functional group -C-O- content increases to 14.37%, and the wettability of the fiber surface increases. The interlayer shear strength (ILSS) value of carbon fiber and polyimide resin matrix increased from 76 MPa to 86.2 MPa at 300℃, indicating that argon plasma treatment can improve the interfacial properties of CF/PI composites at 300℃.

Key wordscomposites    plasma    carbon fiber    interfacial strength    polyimide composites
收稿日期: 2023-03-20     
ZTFLH:  TB332  
基金资助:国家重大研究计划(2019-ZD-380-12);国家自然科学基金(51873109)
通讯作者: 陈平,教授,pchen@dlut.edu.cn,研究方向为高性能高分子材料与先进聚合物基复合材料与功能一体化设计与制备
Corresponding author: CHEN Ping, Tel: (411)84986100, E-mail: pchen@dlut.edu.cn
作者简介: 董哲瑄,男,1998年生,硕士
图1  氩气等离子处体理不同时间后碳纤维的扫描电镜照片
图2  氩气等离子体处理不同时间后碳纤维的原子力显微镜照片
Treatment time / minRa / nmRq / nm
046.754.0
5155.1178.0
7159.4181.8
15198.3230.5
表1  氩气等离子体处理不同时间后碳纤维表面的粗糙度
Treatment time / minElement content / %, atomic fraction
CNO
085.323.2611.43
581.534.0214.45
780.363.3616.28
1582.013.1814.81
表2  氩气等离子体处理不同时间后碳纤维表面各元素的含量
图3  氩气等离子体处理不同时间后碳纤维表面XPS谱的C1s分峰谱
图4  氩气等离子体处理不同时间后碳纤维的接触角
Treatment time / minConcentration of correlative functional groups / %
-C-C--C-N--C-O--O-C=O
064.5618.469.687.30
562.2115.9612.389.45
760.4016.3714.378.86
1563.7317.2611.287.73
表3  氩气等离子体处理不同时间后碳纤维表面各基团的相对含量
图5  氩气等离子体处理不同时间后碳纤维单丝的抗拉强度
图6  氩气等离子体处理不同时间后CF/PI复合材料的300℃下ILSS值
Treatment time / minτ1/ MPaτ2/ MPaRetention rate / %
089.7776.084.66
7108.7886.279.24
表4  CF/PI复合材料层间剪切强度的保持率
图7  氩气等离子体处理前后CF/PI复合材料的吸水率
1 Das T K, Ghosh P, Das N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review [J]. Adv. Compos. Hybrid Mater., 2019, 2(2): 214
doi: 10.1007/s42114-018-0072-z
2 Fitzer E, Gkogkidis A, Heine M. Carbon fibres and their composites (a review) [J]. High Temp. - High Pressures, 1984, 16: 363
3 Ke H J, Zhao L W, Zhang X H, et al. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide [J]. Polym. Test., 2020, 90: 106746
doi: 10.1016/j.polymertesting.2020.106746
4 Xiao T J, Gao S Q, Hu A J, et al. Thermosetting polyimides with improved impact toughness and excellent thermal and thermo-oxidative stability [J]. High Perform. Polym., 2001, 13(4): 287
doi: 10.1088/0954-0083/13/4/307
5 Liu L, Jia C Y, He J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites [J]. Compos. Sci. Technol., 2015, 121: 56
doi: 10.1016/j.compscitech.2015.08.002
6 Sharma M, Gao S L, Mäder E, et al. Carbon fiber surfaces and composite interphases [J]. Compos. Sci. Technol., 2014, 102: 35
doi: 10.1016/j.compscitech.2014.07.005
7 Liu Y W, Zhang Z Q, Huang Y D, et al. Effect of properties of carbon fiber surface modified by anodic treatment and a coupling agent on electron beam cured epoxy composites [J]. Chin. High Technol. Lett., 2002, 12(3): 38
7 刘玉文, 张志谦, 黄玉东 等. 电子束固化树脂基复合材料中碳纤维表面改性研究 [J]. 高技术通讯, 2000, 12(3): 38
8 Tiwari S, Bijwe J, Panier S. Polyetherimide composites with gamma irradiated carbon fabric: studies on abrasive wear [J]. Wear, 2011, 270(9-10): 688
doi: 10.1016/j.wear.2011.01.035
9 Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites [J]. Composites, 2012, 43A(7) : 1120
10 Zhang X R, Zhao P, Pei X Q, et al. Flexural strength and tribological properties of rare earth treated short carbon fiber/polyimide composites [J]. Express Polym. Lett., 2007, 1(10): 667
doi: 10.3144/expresspolymlett.2007.91
11 Bauer M, Beratz S, Ruhland K, et al. Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: quantification of surface functional groups by gas-phase derivatization [J]. Appl. Surf. Sci., 2020, 506: 144947
doi: 10.1016/j.apsusc.2019.144947
12 Qiu Y H, Wang Y J, Zhang C, et al. Atmospheric pressure helium+oxygen plasma treatment of ultrahigh modulus polyethylene fibers [J]. J. Adhes. Sci. Technol., 2002, 16(4): 449
doi: 10.1163/156856102760067217
13 Zang Z L, Tang G, Li J, et al. Mechanical property improvement of plasma treated carbon fiber-reinforced polyurethanes (PUR) composites with SiO2 filler [J]. Polym.-Plast. Technol. Eng., 2012, 51(7): 696
doi: 10.1080/03602559.2012.661900
14 Zhao Y, Zhang C Y, Shao X, et al. Effect of atmospheric plasma treatment on carbon fiber/epoxy interfacial adhesion [J]. J. Adhes. Sci. Technol., 2011, 25(20): 2897
doi: 10.1163/016942411X576572
15 Liu Z, Tang C, Chen P, et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin [J]. RSC Adv., 2014, 4(51): 26881
doi: 10.1039/c4ra01835d
16 Wang Q, Chen P, Jia C X, et al. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber [J]. Appl. Surf. Sci., 2011, 258(1): 513
doi: 10.1016/j.apsusc.2011.08.078
17 Chen Y Z, Zhang C S, Chen P. Surface graft modification of domestic PBO fiber by atmospheric air plasma [J]. Chin. J. Mater. Res., 2021, 35(9): 641
doi: 10.11901/1005.3093.2020.562
17 陈怿咨, 张承双, 陈 平. 用常压空气等离子体对PBO纤维表面接枝改性 [J]. 材料研究学报, 2021, 35(9): 641
doi: 10.11901/1005.3093.2020.562
18 Liu Z, Chen B H, Chen P. Treatment of oxygen dielectric barrier discharge plasma on PBO fiber surface and influence on its BMI composites [J]. Chin. J. Mater. Res., 2020, 34(2): 109
18 刘 哲, 陈博涵, 陈 平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响 [J]. 材料研究学报, 2020, 34(2): 109
19 He M, Qi P F, Xu P, et al. Establishing a phthalocyanine-based crosslinking interphase enhances the interfacial performances of carbon fiber/epoxy composites at elevated temperatures [J]. Compos. Sci. Technol., 2019, 173: 24
doi: 10.1016/j.compscitech.2019.01.015
20 Kajjout M, Lemmouchi Y, Jama C, et al. Grafting of amine functions on cellulose acetate fibers by plasma processing [J]. React. Funct. Polym., 2019, 134: 40
doi: 10.1016/j.reactfunctpolym.2018.11.004
21 Lu C, Chen P, Yu Q, et al. Interfacial adhesion of plasma-treated carbon fiber/poly(phthalazinone ether sulfone ketone) composite [J]. J. Appl. Polym. Sci., 2007, 106(3): 1733
doi: 10.1002/app.v106:3
22 Ma K M, Chen P, Wang B C, et al. A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites [J]. J. Appl. Polym. Sci., 2010, 118(3): 1606
doi: 10.1002/app.v118:3
23 Zhang C S, Chen P, Sun B L, et al. Surface analysis of oxygen plasma treated poly(p-phenylene benzobisoxazole) fibers [J]. Appl. Surf. Sci., 2008, 254(18): 5776
doi: 10.1016/j.apsusc.2008.03.082
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 徐文玉, 孙佳文, 朱曜峰. 自组装碳/环氧树脂复合吸波涂料的制备及性能[J]. 材料研究学报, 2023, 37(12): 952-960.