Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 649-654    DOI: 10.11901/1005.3093.2022.504
  研究论文 本期目录 | 过刊浏览 |
碱金属掺杂MIL125CO2 吸附性能
宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉()
长安大学材料科学与工程学院 交通铺面材料教育部工程研究中心 西安 710064
Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125
SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui()
Engineering Research Center of Transportation Materials, Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
引用本文:

宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
Lifang SONG, Jiahao YAN, Diankang ZHANG, Cheng XUE, Huiyun XIA, Yanhui NIU. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. Chinese Journal of Materials Research, 2023, 37(9): 649-654.

全文: PDF(10275 KB)   HTML
摘要: 

以对苯二甲酸和钛酸异丙酯为原料制备金属有机骨架化合物MIL125,然后用盐溶液后浸渍法制备出系列碱金属阳离子掺杂的M@MIL125-t(M: Li+,Na+,K+t:6 h,9 h,12 h)。用傅立叶红外光谱、X射线衍射和场发射扫描电镜等手段表征其微观结构和形貌,进行N2等温吸脱附和CO2吸附测出其比表面积及CO2吸附量,研究了不同碱金属盐浸渍液和浸渍时间对MIL125的比表面积和CO2吸附能力的影响。结果表明,MIL125经碱金属氯盐溶液浸渍后其结构和晶型没有明显改变,浸渍液的表面腐蚀和孔道堵塞的共同作用使MIL125晶粒的比表面积均先增大后减小;与MIL125相比,掺杂Na+且浸渍9 h的比表面积(最高为2497 m2/g),提高了81.5%,CO2吸附量(为1.41 mmol/g)提高了72.0%。

关键词 无机非金属材料金属有机骨架MIL125碱金属CO2吸附    
Abstract

The metal-organic skeleton compound MIL125 was prepared with terephthalic acid and isopropyl titanate as raw materials, afterwards by post impregnating in alkaline metal chloride solution, a series of alkali metal cation-doped M@MIL125-t (M: Li+, Na+, K+; t: 6 h, 9 h, 12 h) were obtained. They were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Their specific surface area and CO2 adsorption capacity were assessed by nitrogen isothermal adsorption-desorption curve and CO2 adsorption curve measurements. The results showed that being impregnated with alkali metal chloride solution, the structure and crystal form of MIL125 has not changed significantly. The surface and pores of MIL125 grain was corroded by the impregnation solution, and the specific surface area increased first and then decreased. The optimum impregnation time of MIL125 in the three alkali metal chloride solutions was 9 h. When doped with Na+ by impregnating for 9 h, the maximum specific surface area is up to 2497 m2/g, which is 81.5% higher than that of blank MIL125, and the CO2 adsorption amount is 1.41 mmol/g, which is 72.0% higher than that of blank MIL125.

Key wordsinorganic non-metallic materials    metal organic frameworks    MIL125    alkali metal    CO2 adsorption
收稿日期: 2022-09-19     
ZTFLH:  TB333  
基金资助:国家自然科学基金(51502021);大学生创新创业训练计划(X202210710585)
通讯作者: 牛艳辉,教授,niuyh@chd.edu.cn,研究方向为绿色智能材料
Corresponding author: NIU Yanhui, Tel: 18913730031, E-mail: niuyh@chd.edu.cn
作者简介: 宋莉芳,女,1980年生,副教授
图1  MIL125和M@MIL125-t的FT-IR光谱
图2  MIL125和M@MIL125-t的XRD谱
图3  MIL125和M@MIL125-t的TG曲线
图4  MIL125,Li@MIL125-9和K@MIL125-9的SEM照片
图5  Na@MIL125-t的SEM照片
图6  K@MIL125-9的SEM-EDS图
图7  MIL125和M@MIL125-t的N2等温吸脱附曲线
图8  MIL125和M@MIL125-t的比表面积
图9  MIL125和M@MIL125-t的CO2吸附曲线
图10  CO2吸附量与MIL125、M@MIL125-t中SBET的关系
1 Yang X, Xu Q. Bimetallic metal-organic frameworks (MOFs) for gas storage and separation [J]. Cryst. Growth Des., 2017, 17(4): 1450
doi: 10.1021/acs.cgd.7b00166
2 Mohamad M S, Boyd P G, Lev S, et al. Improving the mechanical stability of metal-organic frameworks using chemical caryatids [J]. ACS Central Sci., 2018, 4(7): 832
doi: 10.1021/acscentsci.8b00157 pmid: 30062111
3 Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals [J]. Science, 2018, 359(6372): 206
doi: 10.1126/science.aao3403 pmid: 29326271
4 Bahamon D, Díaz-Márquez A, Gamallo P, et al. Energetic evaluation of swing adsorption processes for CO2, capture in selected MOFs and zeolites: Effect of impurities [J]. Chem. Eng. J, 2018, 342(15): 458
doi: 10.1016/j.cej.2018.02.094
5 Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. J. Am. Chem. Soc., 2005, 127(51): 17998
pmid: 16366539
6 Zhao Z, Li Z, Lin Y S. Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5) [J]. Ind. Eng. Chem. Res., 2009, 48(22): 10015
doi: 10.1021/ie900665f
7 Yang D A, Cho H Y, Kim J, et al. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method [J]. Energy Environ. Sci., 2012, 5(4): 6465
doi: 10.1039/C1EE02234B
8 Rada Z H, Abid H R, Shang J, et al. Effects of amino functionality on uptake of CO2, CH4, and selectivity of CO2/CH4 on titanium based MOFs [J]. Fuel, 2015, 160(15): 318
doi: 10.1016/j.fuel.2015.07.088
9 Zlotea C, Phanon D, Mazaj M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs [J]. Dalton Trans., 2011, 40(18): 4879
doi: 10.1039/c1dt10115c
10 Xiang Z, Hu Z, Yang W, et al. Lithium doping on metal-organic frameworks for enhancing H2 Storage [J]. Int. J. Hydrogen Energy, 2012, 37(1): 946
doi: 10.1016/j.ijhydene.2011.03.102
11 Xue C. CO2 adsorption of metal doped MIL-125(Ti) and properties of supercapacitor electrode materials [D]. Xi'an: Chang'an University, 2019
11 薛 程. 金属掺杂MIL-125(Ti)的CO2吸附及超级电容器电极材料性能研究 [D]. 西安, 长安大学, 2019
12 Han S S, Goddard W A. Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature [J]. J. Am. Chem. Soc., 2007, 129(27): 8422
doi: 10.1021/ja072599+
13 Yang S, Lin X, Blake A J, et al. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework [J]. Nature Chem., 2009, 1(6): 487
doi: 10.1038/nchem.333
14 Cao Y, Zhao Y, Song F, et al. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity [J]. J. Energy Chem., 2014, 23(4): 468
doi: 10.1016/S2095-4956(14)60173-X
15 Poloni R, Lee K, Berger R F, et al. Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites [J]. J. Phys. Chem. Lett. 2014, 5(5), 861
doi: 10.1021/jz500202x
16 Kim S N, Kim J, Kim H Y, et al. Adsorption/catalytic properties of MIL125 and NH2-MIL125 [J]. Catal. Today, 2013, 204(1): 85
doi: 10.1016/j.cattod.2012.08.014
17 Sohail M, Yun Y N, Lee E, et al. Synthesis of highly crystalline NH2-MIL125 (Ti) with s-shaped water isotherms for adsorption heat transformation [J]. Cryst. Growth Des., 2017, 17(3): 1208
doi: 10.1021/acs.cgd.6b01597
18 Irina D, Ji S L, Nataliya V, et al. Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL125 metal-organic frameworks [J]. Eur. J. Inorg. Chem., 2014, 2014(1): 132
doi: 10.1002/ejic.v2014.1
19 Zhang X L, Chen Z J, Yang X Q, et al. The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework [J]. Micropor. Mesopor. Mater., 2018, 258(1): 55
doi: 10.1016/j.micromeso.2017.08.013
20 Hu S, Liu M, Li K, et al. Surfactant-assisted synthesis of hierarchical NH2-MIL125 for the removal of organic dyes [J]. RSC Adv., 2017, 7(1): 581
doi: 10.1039/C6RA25745C
21 Zhang X, Sun L X, Song J, et al. Based on a V-shaped In(III) metal-organic framework (MOF): design, synthesis and characterization of diverse physical and chemical properties [J]. Polyhedron, 2017, 134(25): 207
doi: 10.1016/j.poly.2017.05.061
[1] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[2] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[3] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.