材料研究学报, 2023, 37(9): 649-654 DOI: 10.11901/1005.3093.2022.504

研究论文

碱金属掺杂MIL125CO2 吸附性能

宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉,

长安大学材料科学与工程学院 交通铺面材料教育部工程研究中心 西安 710064

Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125

SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui,

Engineering Research Center of Transportation Materials, Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China

通讯作者: 牛艳辉,教授,niuyh@chd.edu.cn,研究方向为绿色智能材料

责任编辑: 黄青

收稿日期: 2022-09-19   修回日期: 2023-04-26  

基金资助: 国家自然科学基金(51502021)
大学生创新创业训练计划(X202210710585)

Corresponding authors: NIU Yanhui, Tel: 18913730031, E-mail:niuyh@chd.edu.cn

Received: 2022-09-19   Revised: 2023-04-26  

Fund supported: National Natural Science Foundation of China(51502021)
National Training Programs of Innovation and Entrepreneurship for Undergraduates(X202210710585)

作者简介 About authors

宋莉芳,女,1980年生,副教授

摘要

以对苯二甲酸和钛酸异丙酯为原料制备金属有机骨架化合物MIL125,然后用盐溶液后浸渍法制备出系列碱金属阳离子掺杂的M@MIL125-t(M: Li+,Na+,K+t:6 h,9 h,12 h)。用傅立叶红外光谱、X射线衍射和场发射扫描电镜等手段表征其微观结构和形貌,进行N2等温吸脱附和CO2吸附测出其比表面积及CO2吸附量,研究了不同碱金属盐浸渍液和浸渍时间对MIL125的比表面积和CO2吸附能力的影响。结果表明,MIL125经碱金属氯盐溶液浸渍后其结构和晶型没有明显改变,浸渍液的表面腐蚀和孔道堵塞的共同作用使MIL125晶粒的比表面积均先增大后减小;与MIL125相比,掺杂Na+且浸渍9 h的比表面积(最高为2497 m2/g),提高了81.5%,CO2吸附量(为1.41 mmol/g)提高了72.0%。

关键词: 无机非金属材料; 金属有机骨架; MIL125; 碱金属; CO2吸附

Abstract

The metal-organic skeleton compound MIL125 was prepared with terephthalic acid and isopropyl titanate as raw materials, afterwards by post impregnating in alkaline metal chloride solution, a series of alkali metal cation-doped M@MIL125-t (M: Li+, Na+, K+; t: 6 h, 9 h, 12 h) were obtained. They were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Their specific surface area and CO2 adsorption capacity were assessed by nitrogen isothermal adsorption-desorption curve and CO2 adsorption curve measurements. The results showed that being impregnated with alkali metal chloride solution, the structure and crystal form of MIL125 has not changed significantly. The surface and pores of MIL125 grain was corroded by the impregnation solution, and the specific surface area increased first and then decreased. The optimum impregnation time of MIL125 in the three alkali metal chloride solutions was 9 h. When doped with Na+ by impregnating for 9 h, the maximum specific surface area is up to 2497 m2/g, which is 81.5% higher than that of blank MIL125, and the CO2 adsorption amount is 1.41 mmol/g, which is 72.0% higher than that of blank MIL125.

Keywords: inorganic non-metallic materials; metal organic frameworks; MIL125; alkali metal; CO2 adsorption

PDF (10275KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654 DOI:10.11901/1005.3093.2022.504

SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. Chinese Journal of Materials Research, 2023, 37(9): 649-654 DOI:10.11901/1005.3093.2022.504

金属有机骨架材料(MOFs)是一种新型多孔材料,具有较大的比表面积和可调节的孔道结构,在催化、气体吸附与分离、污水处理、药物载体等领域有广阔的应用前景[1~4]。Millward等[5]发现,MOF-177在常温和较高压力(3500 kPa)下具有较高的CO2吸附能力。Zhao等[6]在2009年发现,MOF-5在常温和低压(100 kPa)下的CO2吸附量为1.1 mmol/g。Yang等[7]发现,Mg-MOF-74在常温和低压(100 kPa)CO2的吸附量较大,达到8.0 mmol/g。

掺杂金属离子可进一步提高MOFs的气体吸附能力[8~11]。Han等[12]研究了Li掺杂的Li·Cu3(BTC)2和Li·MIL-101(Cr)的H2吸附能力,发现在77 K和100 kPa下其储氢能力分别提高到145%、143%。Yang等[13]将NOTT-200浸渍在锂的氯盐溶液中,发现其储氢量大大提高。Cao等[14]研究了Li+、Na+和K+掺杂对HKUST-l的CO2吸附性能的影响,发现在298 K和1800 kPa下其CO2吸附量最高可达8.64 mmol/g(1K-HKUST-l),比纯HKUST-l提高11%。Poloni等[15]基于密度泛函理论(DFT)计算了Ca、Mg和9个二价过渡金属阳离子对M-BTT和M-MOF-74的CO2吸附行为的影响,发现二价阳离子的特定电子结构和金属配位点在CO2结合时产生的对称性有利于对气体的吸附。

本文以对苯二甲酸为配体,钛酸异丙酯为金属源用溶剂热法制备金属有机骨架材料MIL125,然后用盐溶液浸渍进行后功能化改性,制备一系列Li+、Na+和K+掺杂的M@MIL125-t(M代表碱金属:Li,Na和K;t代表氯盐溶液浸渍处理时间:6,9,12 h),研究其在293 K和101.325 kPa条件下对CO2吸附性能。

1 实验方法

1.1 实验用试剂和仪器

实验用试剂:对苯二甲酸(CAS:100-21-0,98%);钛酸异丙酯(CAS:546-68-9,97%);N,N-二甲基甲酰胺(DMF,CAS:68-12-2,分析纯);甲醇(CAS:67-56-1,分析纯);氯化锂(CAS:7447-41-8,97%);氯化钠(CAS:7647-14-5,99.5%);氯化钾(CAS:7447-40-7,99.5%)。

实验用仪器:傅里叶变换红外光谱仪(FT-IR,Bruker AXS TENSOR-27);X射线衍射仪(XRD,Bruker-D8 Advance);热重分析仪(TG,TA-SDT Q600);扫描电子显微镜(SEM,SU8020场发射扫描电子显微镜);气体吸附(Quantachrome Instruments Autosorb-1物理吸附仪),在77 K下进行氮气等温吸脱附测试,在293 K下进行CO2吸附测试。

1.2 MIL125M@MIL125-t 样品的制备

MIL125的制备:将1.3108 g的对苯二甲酸,加入到25 mL的N,N-二甲基甲酰胺/甲醇(体积比4∶1)混合溶剂中,得到均匀混合液;将1.440 mL钛酸异丙酯在0℃冰水浴条件下缓慢加入到混合液中,得到白色悬浊液;然后将悬浊液移入100 mL内含聚四氟乙烯的高压反应釜中,在110℃下晶化72 h,冷却后用DMF浸泡活化处理过夜后离心分离,最后将样品在60℃真空干燥6 h,然后甲醇用相同的步骤浸泡活化处理,得到MIL125。

M@MIL125-t的制备:用碱金属氯盐配置成摩尔浓度为0.02 mol/L的浸渍液。将0.0424 g氯化锂、0.0585 g氯化钠和0.0745 g氯化钾分别溶解在50 mL无水乙醇/DMF混合溶剂(体积比4∶1)中。将9份质量为1 g的MIL125粉末分别浸渍在上述三种浸渍液中,浸渍时间分别为6 h、9 h和12 h。浸渍完成后将产物用无水乙醇洗涤三次,抽滤后在60℃真空干燥8 h,将得到的九组掺杂样品记为M@MIL125-t

2 结果和讨论

2.1 样品的傅里叶红外光谱

图1给出了用不同盐溶液浸渍后的MIL125的红外光谱。可以看出,与对苯二甲酸相比,出现在1680 cm-1附近的羧基吸收峰消失,表明对苯二甲酸的配位成功。掺杂前后的样品其吸收峰位相似[16],表明碱金属氯盐浸渍液处理的掺杂方式没有破坏MIL125中的成键情况。

图1

图1   MIL125和M@MIL125-t的FT-IR光谱

Fig.1   FT-IR spectra of MIL125 and M@MIL125-t


红外光谱中出现在1400-1590 cm-1范围内的吸收峰对应COO-的对称伸缩振动和O-C-O的不对称伸缩振动,出现在745 cm-1附近的吸收峰对应Ti-O的伸缩振动,出现在505~760 cm-1范围内的吸收峰对应Ti-O-Ti的对称伸缩振动[17]。光谱中出现在3200~3600 cm-1范围内的吸收峰来自样品吸附的水,这种低强度的宽峰表明水的含量很低。

2.2 样品的物相组成

图2给出了碱金属掺杂MIL125前后样品的XRD谱。可以看出,掺杂前后的样品峰形尖锐,杂峰少,主要的出峰角度在6.5°,9.5°,11.5°,15.0°和19.5°处,表明MIL125的反应较为完全[18]。同时,用Li+、Na+、K+的氯盐溶液浸渍处理后的M@MIL125-t其峰位相近,表明碱金属掺杂前后的样品结构相似,掺杂处理没有改变MIL125的晶体结构。

图2

图2   MIL125和M@MIL125-t的XRD谱

Fig.2   XRD patterns of MIL125 and M@MIL125-t


对比不同浸渍金属Li+、Na+和K+和浸渍时间6h、9 h和12 h后MIL125的晶体结构,发现在每种碱金属的氯盐溶液中浸渍一定时间后MIL125的衍射峰强度均稍有减弱。其原因是,盐溶液浸渍处理并干燥后,不同尺寸的碱金属离子沉积在MIL125的孔道内外,特别是滞留在孔道内的碱金属离子堵塞了孔道,使晶格尺寸发生变化,引起MIL125晶体结构的细微变形。

2.3 热稳定性

图3给出了碱金属掺杂改性MIL125前后(在空气中)的热失重曲线。可以看出,掺杂Na+和K+的MIL125其失重曲线基本相同,后者的质量损失略有减小。掺杂Li+的MIL125其质量损失十分明显。其原因是,用于掺杂的Li+半径较小,洗涤干燥后掺杂的比例降低。此外,随着浸渍时间的延长MIL125的总质量损失有所降低,因为掺杂时间的延长有利于Li+进入孔道和稳定晶体骨架。

图3

图3   MIL125和M@MIL125-t的TG曲线

Fig.3   TG curves of MIL125 and M@MIL125-t


从热重曲线可见,Li+掺杂的MIL125出现质量损失的温度最低,且在低于400℃的质量损失已达25%,随后骨架完全坍塌。而Na+和K+掺杂的MIL125低于该温度的质量损失是连续缓慢的,200℃的质量损失约为5%,主要是物理吸附的水、结合水,以及活化处理用的溶剂DMF和甲醇等非配位小分子的分解[19,20]。在500℃~600℃所有样品的质量损失都比较显著,是样品骨架的分解所致;温度高于600℃后MOFs的结构完全坍塌。

2.4 MIL125Li@MIL125-9K@MIL125-9的形貌

图4图5给出了MIL125掺杂Li+、Na+、K+后的微观形貌。可以看出,未掺杂的MIL125呈圆盘状,直径约为0.5 μm。掺杂碱金属后MIL125变成方盘状,厚度略有减小。在理想状态下,M@MIL125-t的形貌不会改变[21]。其原因是,在浸渍过程中碱金属盐溶液剥蚀样品的表面,使MIL125从由圆盘状变成方盘状。但是后浸渍掺杂碱金属离子并不影响Ti2+与配体对苯二甲酸的羧基之间的配位,从红外光谱上也可以看出。

图4

图4   MIL125,Li@MIL125-9和K@MIL125-9的SEM照片

Fig.4   SEM images of MIL125, Li@MIL125-9 and K@MIL125-9


图5

图5   Na@MIL125-t的SEM照片

Fig.5   SEM images of Na@MIL125-t


以Na@MIL125-t为例,研究了Na+浸渍掺杂时间对MIL125微观形貌的影响。浸渍液的摩尔浓度均为0.02 mol/L,浸渍时间分别为6 h、9 h、12 h,结果如图5所示。可以看出,随着浸渍时间的延长Na@MIL125-t均为方盘状。腐蚀的强度与电解质溶液浓度和浸渍时间有关。随着浸渍时间的延长腐蚀程度提高,粒径变小的颗粒数量逐渐增多。

为了验证碱金属盐溶液后浸渍掺杂的有效性和碱金属在MIL125骨架中的存在情况,以K@MIL125-9为例,进行SEM-EDS面扫描研究了Ti、K和Cl元素的分布。从图6可见,K+均匀地分布在K@MIL125-9中。这表明,碱金属离子浸渍及活化处理后仍能很好的结合在MIL125的骨架结构当中,表明这种后掺杂简单有效。Na@MIL125-9的EDS结果也表明,Na+的分布均匀。

图6

图6   K@MIL125-9的SEM-EDS图

Fig.6   SEM-EDS mapping of K@MIL125-9


2.5 样品的N2 等温吸脱附

图7给出了碱金属掺杂前后MIL125和M@MIL125-t的低温氮气等温线,图8给出了掺杂不同种类的金属时表面积的对比。可以看出,MIL125的比表面积为1376 m2/g,Li@MIL125-t的比表面积明显减小,Na@MIL125-t和K@MIL125-t的比表面积增大。Na@MIL125-9的比表面积达到2497 m2/g,比MIL125提高了81.5%。

图7

图7   MIL125和M@MIL125-t的N2等温吸脱附曲线

Fig.7   N2 adsorption isotherms of MIL125 and M@MIL125-t at 77 K


图8

图8   MIL125和M@MIL125-t的比表面积

Fig.8   BET surface area of MIL125 and M@MIL125-t


掺杂后MIL125的比表面积均发生了变化,主要是碱金属盐溶液浸渍腐蚀了MIL125的骨架结构。掺杂不同碱金属时,M@MIL125-t的最佳浸渍时间均为9 h。掺杂Li+时,浸渍时间较短时大量Li+因半径较小而聚集在孔道中,使孔道堵塞而减小了比表面积。随着浸渍时间的增加骨架和溶液中的Li+达到动态平衡,浸渍液置换孔道中未配位的有机配体,使MIL125-t的结构发生了变化。

2.6 样品的CO2 吸附性能

图9给出了MIL125和M@MIL125-t在293 K和101.325 kPa条件下的CO2吸附曲线,图10给出了掺杂不同种类碱金属离子时CO2吸附量与比表面积的关系。可以看出,MIL125的CO2吸附量为0.82 mmol/g,掺杂Li+、Na+、K+后CO2吸附量均有提高,其原因可能是CO2优先吸附在碱金属离子的周围。浸渍处理时间为9 h时,Li@MIL125-t、Na@MIL125-t和K@MIL125-t的比表面积和CO2吸附量达到最大。Na@MIL125-9的CO2吸附量最高为1.41 mmol/g,提高了约72.0%;Li@MIL125-9的CO2吸附量为1.21 mmol/g,提高了47.6%;K@MIL125-9的CO2吸附量为1.18 mmol/g,提高了43.9%。

图9

图9   MIL125和M@MIL125-t的CO2吸附曲线

Fig.9   CO2 adsorption isotherms of MIL125 and M@MIL125-t (293 K, 101.325 kPa)


图10

图10   CO2吸附量与MIL125、M@MIL125-t中SBET的关系

Fig.10   Relationship between CO2 uptake and SBET in M@MIL125-t(293 K and 101.325 kPa)


可以看出,碱金属掺杂影响MIL125的CO2吸附性能,CO2的吸附量与比表面积的关系很大。Na@MIL125-9的比表面积和CO2吸附量都最大,Li@MIL125-9的比表面积变小,但CO2吸附量增大。值得注意的是,Li@MIL125-12和K@MIL125-9的CO2吸附量接近,但是其比表面积分别不同(分别为861 m2/g和1521 m2/g)。其原因可能是,Li+的第一电离能和Lennard-Jones势更低,在101.325 kPa条件下对CO2的吸附性能更显著[19]

3 结论

(1) 用不同种类的碱金属和浸渍时间对MIL125掺杂,对其成键情况、物相结构和热稳定性没有明显的影响。碱金属浸渍液的腐蚀,使MIL125的形貌逐渐由圆饼状向方饼状转变,晶粒尺寸显著减小。

(2) 用Li+、Na+和K+三种碱金属掺杂,碱金属盐溶液浸渍9 h后M@MIL125-t的比表面积最大,Na@MIL125-t系列的比表面积最高。

(3) 用碱金属掺杂后,M@MIL125-t的CO2吸附量比MIL125均有不同程度的提高,因为CO2优先吸附在新引入的Li+、Na+和K+周围。

参考文献

Yang X, Xu Q.

Bimetallic metal-organic frameworks (MOFs) for gas storage and separation

[J]. Cryst. Growth Des., 2017, 17(4): 1450

DOI      URL     [本文引用: 1]

Mohamad M S, Boyd P G, Lev S, et al.

Improving the mechanical stability of metal-organic frameworks using chemical caryatids

[J]. ACS Central Sci., 2018, 4(7): 832

DOI      PMID     

Metal-organic frameworks (MOFs) have emerged as versatile materials for applications ranging from gas separation and storage, catalysis, and sensing. The attractive feature of MOFs is that, by changing the ligand and/or metal, they can be chemically tuned to perform optimally for a given application. In most, if not all, of these applications one also needs a material that has a sufficient mechanical stability, but our understanding of how changes in the chemical structure influence mechanical stability is limited. In this work, we rationalize how the mechanical properties of MOFs are related to framework bonding topology and ligand structure. We illustrate that the functional groups on the organic ligands can either enhance the mechanical stability through formation of a secondary network of nonbonded interactions or soften the material by destabilizing the bonded network of a MOF. In addition, we show that synergistic effect of the bonding network of the material and the secondary network is required to achieve optimal mechanical stability of a MOF. The developed molecular insights in this work can be used for systematic improvement of the mechanical stability of the materials by careful selection of the functional groups.

Shen K, Zhang L, Chen X, et al.

Ordered macro-microporous metal-organic framework single crystals

[J]. Science, 2018, 359(6372): 206

DOI      PMID     

We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Bahamon D, Díaz-Márquez A, Gamallo P, et al.

Energetic evaluation of swing adsorption processes for CO2, capture in selected MOFs and zeolites: Effect of impurities

[J]. Chem. Eng. J, 2018, 342(15): 458

DOI      URL     [本文引用: 1]

Millward A R, Yaghi O M.

Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature

[J]. J. Am. Chem. Soc., 2005, 127(51): 17998

PMID      [本文引用: 1]

Metal-organic frameworks (MOFs) show high CO2 storage capacity at room temperature. Gravimetric CO2 isotherms for MOF-2, MOF-505, Cu3(BTC)2, MOF-74, IRMOFs-11, -3, -6, and -1, and MOF-177 are reported up to 42 bar. Type I isotherms are found in all cases except for MOFs based on Zn4O(O2C)6 clusters, which reveal a sigmoidal isotherm (having a step). The various pressures of the isotherm steps correlate with increasing pore size, which indicates potential for gas separations. The amine functionality of the IRMOF-3 pore shows evidence of relatively increased affinity for CO2. Capacities qualitatively scale with surface area and range from 3.2 mmol/g for MOF-2 to 33.5 mmol/g (320 cm3(STP)/cm3, 147 wt %) for MOF-177, the highest CO2 capacity of any porous material reported.

Zhao Z, Li Z, Lin Y S.

Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)

[J]. Ind. Eng. Chem. Res., 2009, 48(22): 10015

DOI      URL     [本文引用: 1]

Yang D A, Cho H Y, Kim J, et al.

CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method

[J]. Energy Environ. Sci., 2012, 5(4): 6465

DOI      URL     [本文引用: 1]

Rada Z H, Abid H R, Shang J, et al.

Effects of amino functionality on uptake of CO2, CH4, and selectivity of CO2/CH4 on titanium based MOFs

[J]. Fuel, 2015, 160(15): 318

DOI      URL     [本文引用: 1]

Zlotea C, Phanon D, Mazaj M, et al.

Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs

[J]. Dalton Trans., 2011, 40(18): 4879

DOI      URL    

Xiang Z, Hu Z, Yang W, et al.

Lithium doping on metal-organic frameworks for enhancing H2 Storage

[J]. Int. J. Hydrogen Energy, 2012, 37(1): 946

DOI      URL    

Xue C. CO2 adsorption of metal doped MIL-125(Ti) and properties of supercapacitor electrode materials [D]. Xi'an: Chang'an University, 2019

[本文引用: 1]

薛 程. 金属掺杂MIL-125(Ti)的CO2吸附及超级电容器电极材料性能研究 [D]. 西安, 长安大学, 2019

[本文引用: 1]

Han S S, Goddard W A.

Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature

[J]. J. Am. Chem. Soc., 2007, 129(27): 8422

DOI      URL     [本文引用: 1]

Yang S, Lin X, Blake A J, et al.

Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework

[J]. Nature Chem., 2009, 1(6): 487

DOI      [本文引用: 1]

Cao Y, Zhao Y, Song F, et al.

Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

[J]. J. Energy Chem., 2014, 23(4): 468

DOI      [本文引用: 1]

Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO<sub>2</sub> from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO<sub>2</sub> adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO<sub>2</sub> storage capacity of HKUST-1 doped with moderate quantities of Li<sup>+</sup>, Na<sup>+</sup> and K<sup>+</sup>, individually, was greater than that of unmodified HKUST-1. The highest CO<sub>2</sub> adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO<sub>2</sub> than those of N<sub>2</sub>. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO<sub>2</sub> after 10 cycles.

Poloni R, Lee K, Berger R F, et al.

Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites

[J]. J. Phys. Chem. Lett. 2014, 5(5), 861

DOI      URL     [本文引用: 1]

Kim S N, Kim J, Kim H Y, et al.

Adsorption/catalytic properties of MIL125 and NH2-MIL125

[J]. Catal. Today, 2013, 204(1): 85

DOI      URL     [本文引用: 1]

Sohail M, Yun Y N, Lee E, et al.

Synthesis of highly crystalline NH2-MIL125 (Ti) with s-shaped water isotherms for adsorption heat transformation

[J]. Cryst. Growth Des., 2017, 17(3): 1208

DOI      URL     [本文引用: 1]

Irina D, Ji S L, Nataliya V, et al.

Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL125 metal-organic frameworks

[J]. Eur. J. Inorg. Chem., 2014, 2014(1): 132

DOI      URL     [本文引用: 1]

Zhang X L, Chen Z J, Yang X Q, et al.

The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework

[J]. Micropor. Mesopor. Mater., 2018, 258(1): 55

DOI      URL     [本文引用: 2]

Hu S, Liu M, Li K, et al.

Surfactant-assisted synthesis of hierarchical NH2-MIL125 for the removal of organic dyes

[J]. RSC Adv., 2017, 7(1): 581

DOI      URL     [本文引用: 1]

Zhang X, Sun L X, Song J, et al.

Based on a V-shaped In(III) metal-organic framework (MOF): design, synthesis and characterization of diverse physical and chemical properties

[J]. Polyhedron, 2017, 134(25): 207

DOI      URL     [本文引用: 1]

/