Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 481-488    DOI: 10.11901/1005.3093.2021.149
  研究论文 本期目录 | 过刊浏览 |
ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能
熊庭辉1,2, 蔡文汉1,2, 苗雨1,2, 陈晨龙2()
1.福州大学化学学院 福州 350108
2.中国科学院福建物质结构研究所 中科院光电材料化学与物理重点实验室 福州 350002
Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films
XIONG Tinghui1,2, CAI Wenhan1,2, MIAO Yu1,2, CHEN Chenlong2()
1.College of Chemistry, Fuzhou University, Fuzhou 350108, China
2.Key Laboratory of Optoelectronic Materials Chemistry and Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, China
引用本文:

熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
Tinghui XIONG, Wenhan CAI, Yu MIAO, Chenlong CHEN. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. Chinese Journal of Materials Research, 2022, 36(7): 481-488.

全文: PDF(8062 KB)   HTML
摘要: 

使用化学气相沉积法在a面蓝宝石衬底上同步外延生长氧化锌(ZnO)竖直纳米棒阵列和薄膜,研究了阵列和薄膜的光电化学性能。结果表明,纳米结构中的竖直单晶纳米棒有六棱柱形和圆柱形,其底部ZnO薄膜使竖直纳米棒互相联通。与ZnO纳米薄膜的比较表明,这种纳米结构具有优异的光电化学性能,其入射光电流效率是ZnO纳米薄膜的2.4倍;光能转化效率是ZnO纳米薄膜的5倍。这种纳米结构优异的光电化学性能,可归因于其高表面积-体积比以及其底部薄膜提供的载流子传输通道。本文分析了这种纳米结构的生长过程,提出了协同生长机理:Au液化吸收气氛中的Zn原子生成合金,合金液滴过饱和后ZnO开始成核,随后在衬底表面生成了ZnO薄膜。同时,还发生了Zn自催化的气-固(VS)生长和Au催化的气-液-固(VLS)生长,分别生成六棱柱纳米棒和圆柱形纳米棒,制备出底部由薄膜连接的竖直纳米棒阵列。

关键词 无机非金属材料ZnO纳米棒阵列同步外延光电化学    
Abstract

The simultaneous epitaxial growth of vertical nanorod arrays and thin films of zinc oxide (ZnO) was realized on a gold-plated plane sapphire substrate via a simple chemical vapor deposition method. In this nanostructure, the vertical single crystal nanorods are hexagonal prism or cylindrical in shape, and are all grown on a ZnO thin film, so that the vertical nanorods are connected to each other through the beneath thin oxide ZnO film. In comparison with ZnO nanofilms, the prepared nanostructure has excellent photoelectrochemistry (PEC) performance with an incident photocurrent efficiency of 2.4 times that of the simple ZnO nanofilms; while its light energy conversion efficiency is 5 times that of ZnO nanofilms. Its excellent PEC performance can be attributed to its high surface area-to-volume ratio and the carrier transport channel provided by the supporter ZnO film. The mechanism for cooperative growth of ZnO nanorod arrays and thin films was proposed as follows: during the processing, Au liquefies and absorbs Zn atoms in the atmosphere forming alloys. After the alloy droplets were supersaturated ZnO begins to nucleate, and then ZnO film formed on the surface of the substrate. At the same time, Zn autocatalyzed (vapor-solid)VS growth and Au catalyzed (vapor-liquid-solid)VLS growth occurred, respectively forming hexagonal prism nanorods and cylindrical nanorods, and finally a vertical nanorod array was connected through the underneath thin ZnO film.

Key wordsinorganic non-metallic materials    ZnO nanorod arrays    simultaneous epitaxy    PEC
收稿日期: 2021-02-24     
ZTFLH:  O646  
基金资助:福建省自然科学基金(2018J01110)
作者简介: 熊庭辉,男,1996年生,硕士生
图1  实验用管式炉的示意图
图2  同步外延生长的ZnO纳米结构(ZnO纳米薄膜和纳米棒阵列)的俯视SEM照片和截面SEM照片
图3  同步外延生长的ZnO纳米结构的XRD谱
图4  生长时间不同的ZnO纳米结构的30°斜视照片
图5  ZnO纳米结构的生长机理
图6  生长时间分别为2 min和8 min样品的XPS全谱和Au 4f-Zn 3p轨道窄谱
图7  ZnO纳米薄膜和ZnO纳米结构的紫外-可见吸收光谱以及 ZnO纳米薄膜和ZnO纳米结构光阳极的入射光电流效率(IPCE)
图8  ZnO纳米薄膜和ZnO纳米结构光阳极的线性扫描伏安(LSV)曲线、光电流-时间(J-t)曲线、光能转化效率(η)曲线和Nyquist图,实线曲线为对应的拟合曲线
PhotoanodesPreparationSaturate photocurrent densityRef. (year)
ZnO nanorodsHydrothermal0.42 mA/cm2 at 1.2 V vs. Ag/AgCl[26] (2016)
ZnO nanorod arraysHydrothermal0.3 mA/cm2 at 1.23 V vs. RHE[27] (2018)
ZnO nanowiresMOCVD0.47 mA/cm2 at 1.5 V vs. Ag/AgCl[28] (2018)
ZnO nanowiresHydrothermal0.24 mA/cm2 at 1.23 V vs. RHE[29] (2019)
ZnO nanorod arraysHydrothermal0.42 mA/cm2 at 1.23 V vs. RHE[30] (2020)
表1  其它类似结构的ZnO光电流密度
1 Wang L M, Yang Z H, Chen X, et al. Formation of porous ZnO microspheres and its application as anode material with superior cycle stability in zinc-nickel secondary batteries [J]. J. Power Sources, 2018, 396: 615
doi: 10.1016/j.jpowsour.2018.06.031
2 Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J]. Chin. J. Mater. Res., 2015, 29: 529
2 汤 洋, 赵 颖, 张增光 等. 氧化锌纳米柱阵列的水热合成及其性能 [J]. 材料研究学报, 2015, 29: 529
3 Wang B S, Li R Y, Zhang Z Y, et al. An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting [J]. Catal. Today, 2019, 321-322: 100
doi: 10.1016/j.cattod.2018.02.028
4 Fang X M, Zeng Z, Gao S Y, et al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chin. J. Mater. Res., 2018, 32: 945
4 方向明, 曾 值, 高世勇 等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32: 945
5 Yang T T, Xue J W, Tan H, et al. Highly ordered ZnO/ZnFe2O4 inverse opals with binder-free heterojunction interfaces for high-performance photoelectrochemical water splitting [J]. J. Mater. Chem., 2018, 6A: 1210
6 Sreedhar A, Reddy I N, Hoai Ta Q T, et al. Insight into anions and cations effect on charge carrier generation and transportation of flake-like co-doped ZnO thin films for stable PEC water splitting activity [J]. J. Electroanal. Chem., 2019, 855: 113583
doi: 10.1016/j.jelechem.2019.113583
7 Zhu Y P, Chen G, Xu X M, et al. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons [J]. ACS Catal., 2017, 7: 3540
doi: 10.1021/acscatal.7b00120
8 Lv R, Wang T, Su F L, et al. Facile synthesis of ZnO nanopencil arrays for photoelectrochemical water splitting [J]. Nano Energy, 2014, 7: 143
doi: 10.1016/j.nanoen.2014.04.020
9 Kennedy O W, Coke M L, White E R, et al. MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction [J]. Mater. Lett., 2018, 212: 51
doi: 10.1016/j.matlet.2017.10.017
10 Yang J S, Wu J J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting [J]. Nano Energy, 2017, 32: 232
doi: 10.1016/j.nanoen.2016.12.039
11 Kong Y, Ma B J, Liu F, et al. Cellular stemness maintenance of human adipose-derived stem cells on ZnO nanorod arrays [J]. Small, 2019, 15: 1904099
doi: 10.1002/smll.201904099
12 Chen Y L, Wang L J, Wang W Z, et al. Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties [J]. Mater. Chem. Phys., 2017, 199: 416
doi: 10.1016/j.matchemphys.2017.07.036
13 Jia C C, Lin Z Y, Huang Y, et al. Nanowire electronics: from nanoscale to macroscale [J]. Chem. Rev., 2019, 119: 9074
doi: 10.1021/acs.chemrev.9b00164
14 Dong B, Yu X X, Dong Z F, et al. Facile synthesis of ZnO nanoparticles for the photocatalytic degradation of methylene blue [J]. J. Sol-Gel Sci. Technol., 2017, 82: 167
doi: 10.1007/s10971-016-4297-4
15 Zou X, Liu Y P, Li G D, et al. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis [J]. Adv. Mater., 2017, 29: 1700404
doi: 10.1002/adma.201700404
16 Maya-Treviño M L, Guzmán-Mar J L, Hinojosa-Reyes L, et al. Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation [J]. Mater. Sci. Semicond. Process., 2018, 77: 74
doi: 10.1016/j.mssp.2017.12.005
17 Wang R, Kong X Y, Zhang W T, et al. Mechanism insight into rapid photocatalytic disinfection of salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures [J]. Appl. Catal., 2018, 225B: 228
18 Lee W J, Lee G H. Morphological variation and luminescence properties of ZnO micro/nanocrystals synthesized by thermal evaporation method [J]. Korean J. Mater. Res., 2017, 27: 530
doi: 10.3740/MRSK.2017.27.10.530
19 Xiao Y C, Tian Y Y, Sun S J, et al. Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate [J]. Nano Res., 2017, 11: 3864
doi: 10.1007/s12274-017-1960-1
20 Wang S, Kuang P Y, Cheng B, et al. ZnO hierarchical microsphere for enhanced photocatalytic activity [J]. J. Alloys Compd., 2018, 741: 622
doi: 10.1016/j.jallcom.2018.01.141
21 Wang Y, Sheng M Q, Weng W P, et al. Electrocatalytic hydrogen evolution reaction on electrodeposited amorphous Co-W alloy coatings in alkaline solution [J]. Chin. J. Mater. Res., 2017, 31: 774
21 王 玉, 盛敏奇, 翁文凭 等. 电沉积非晶态Co-W 合金镀层在碱性溶液中的电催化析氢研究 [J]. 材料研究学报, 2017, 31: 774
22 Guo X M, Qian Y, Zhang W, et al. Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting [J]. J. Alloys Compd., 2018, 765: 835
doi: 10.1016/j.jallcom.2018.06.321
23 Yan S. Preparation of modified TiO2 nanotube array light anode and photoelectrochemical performance research [D]. Qingdao: Qingdao University of Science & Technology, 2018
23 颜 双. 改性TiO2纳米管阵列光阳极的制备及其光电化学性能研究 [D]. 青岛: 青岛科技大学, 2018
24 Wang S, He P, Xie Z W, et al. Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction [J]. Electr. Acta, 2019, 296: 644
doi: 10.1016/j.electacta.2018.11.099
25 Quintana A, Gómez A, Baró M D, et al. Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezoresponse [J]. Mater. Des., 2017, 133: 54
doi: 10.1016/j.matdes.2017.07.039
26 Yan L, Zhao W, Liu Z F. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting [J]. Dalton Trans., 2016, 45: 11346
doi: 10.1039/C6DT02027E
27 Kim D, Zhang Z, Yong K. Synergistic doping effects of a ZnO: N/BiVO4: Mo bunched nanorod array photoanode for enhancing charge transfer and carrier density in photoelectrochemical systems [J]. Nanoscale, 2018, 10: 20256
doi: 10.1039/C8NR06630B
28 Hassan M A, Johar M A, Yu S Y. Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance [J]. ACS Sustainable Chem. Eng., 2018, 6: 16047
doi: 10.1021/acssuschemeng.8b02392
29 Ma H P, Yang J H, Tao J J, et al. Low-temperature epitaxial growth of high-quality GaON films on ZnO nanowires for superior photoelectrochemical water splitting [J]. Nano Energy, 2019, 66: 104089
doi: 10.1016/j.nanoen.2019.104089
30 Hou T F, Johar M A, Boppella R, et al. Vertically aligned one-dimensional ZnO/V2 O5 core–shell hetero-nanostructure for photoelectrochemical water splitting [J]. J. Energy Chem., 2020, 49: 262
doi: 10.1016/j.jechem.2020.02.004
31 Zhang Y, Shao Q, Long S, et al. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting [J]. Nano Energy, 2018, 45: 448
doi: 10.1016/j.nanoen.2018.01.022
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.