Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 321-331    DOI: 10.11901/1005.3093.2021.279
  综述 本期目录 | 过刊浏览 |
高性能Sm2Fe17N x 粉体制备的研究进展
何颖1, 李超群1, 陈小立1, 龙芝梅1, 赖嘉琪1, 邵斌1,2(), 马毅龙1,2(), 陈登明1,2, 董季玲1,2
1.重庆科技学院冶金与材料工程学院 重庆 401331
2.纳微复合材料与器件重庆市重点实验室 重庆 401331
Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties
HE Ying1, LI Chaoqun1, CHEN Xiaoli1, LONG Zhimei1, LAI Jiaqi1, SHAO Bin1,2(), MA Yilong1,2(), CHEN Dengming1,2, DONG Jiling1,2
1.School of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2.Chongqing Key Laboratory of Nano-Micro Composites and Devices, Chongqing 401331, China
引用本文:

何颖, 李超群, 陈小立, 龙芝梅, 赖嘉琪, 邵斌, 马毅龙, 陈登明, 董季玲. 高性能Sm2Fe17N x 粉体制备的研究进展[J]. 材料研究学报, 2022, 36(5): 321-331.
Ying HE, Chaoqun LI, Xiaoli CHEN, Zhimei LONG, Jiaqi LAI, Bin SHAO, Yilong MA, Dengming CHEN, Jiling DONG. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. Chinese Journal of Materials Research, 2022, 36(5): 321-331.

全文: PDF(12208 KB)   HTML
摘要: 

新能源汽车的高速发展,需要能稳定工作在120℃~200℃温度区间的永磁材料。居里温度为476℃、各向异性场为14.7 T的Sm2Fe17N3,具有优良的本征磁性能,可应用在这个温度区间。为了提高Sm2Fe17N3粉体的磁性能,必须将颗粒的粒径减小到临界单畴尺寸以实现高各向异性场;同时,还要避免颗粒尺寸减小产生的表面氧化,以保证高剩磁和最大磁能积。粉体破碎、机械合金化、甩带、薄带连铸、还原扩散以及表面镀覆等多种制备工艺,可用于制备高性能Sm2Fe17N3。目前,实验室制备的Sm2Fe17N3粉体的矫顽力和最大磁能积已经达到28.1 kOe和43.6 MGOe。本文评述近年来Sm2Fe17N3粉体制备的研究成果,包括对制备机理的系统总结并提出仍待解决的关键问题:Sm2Fe17N3粉体的矫顽力、剩磁等与其颗粒尺寸的量化规律以及与颗粒磁畴结构的关联机制;对NH3/H2混合气体中H2对提高氮化效率的作用机制仍需探索;进一步开发在低氧环境下的颗粒粒径均匀化、控制形貌的二次破碎技术;对于还原扩散法,开发适合规模化应用的新前驱体及其制备方法以及快速去除钙副产物的水洗技术等。

关键词 评述金属材料Sm2Fe17N x永磁制备方法    
Abstract

The rapid development of new energy vehicles requires permanent magnet materials that can work stably in the temperature range of 120℃~200℃. Sm2Fe17N3 with Curie temperature of 476℃ and anisotropic field of 14.7 T has excellent intrinsic magnetic properties, and can be used in this temperature range. In order to improve the magnetic properties of Sm2Fe17N3 powder, the particle size of which should be reduced to the critical size close to a single domain, so that to gain high anisotropic field; Meanwhile, surface oxidation caused by particle size reduction should be avoided to ensure high remanence magnetism and maximum magnetic energy product. High performance Sm2Fe17N3 can be prepared by powder crushing, mechanical alloying, strip casting, thin strip continuous casting, reduction diffusion and surface plating. At the present, the coercivity and maximum magnetic energy product of Sm2Fe17N3 powder prepared in laboratory have reached 28.1 kOe and 43.6 MGOe respectively. In this paper, the research results on the preparation of Sm2Fe17N3 powders in recent years are reviewed, including preparation methods and the relevant mechanism, and key problems that remain to be solved, namely the relation of the coercivity and remanence of Sm2Fe17N3 powder with the particle size, as well as with the particle magnetic domain structure;the mechanism related with the enhanced effect H2 within the gas mixture NH3/H2 on the nitriding efficiency of the powder still needs to be revealed; further the secondary crushing technique in low oxygen pressures, which can prepare particles with uniform distribution of particle size, while adjust their morphology, remains to be developed; for the present reduction diffusion method, new precursors, and their preparation methods suitable for massive production, and water washing technology for rapid removal of calcium by-products were also needed to develop.

Key wordsreview    metallic material    Sm2Fe17N x    magnetic properties    preparation methods
收稿日期: 2021-04-29     
ZTFLH:  TM27  
基金资助:重庆科技学院研究生创新计划(YKJCX2020215);重庆市自然科学基金(cstc2019jcyj-msxmX0162);重庆市教委科学技术研究重大项目(KJZD-M201801501);重庆市高校创新研究团队(CXQT19031)
作者简介: 何颖,女,1995年生,硕士
QuantityDensity/kg·m-3TC/℃Ms/emu·g-1Ha/TK1/MJ·m-3(BH)max/kJ·m-3
Nd2Fe14B77603121657.64.9515
Sm2Fe17N3768047616014.68.6475
表1  Nd2Fe14B和Sm2Fe17N3的磁性能[16~19]
图1  Sm2Fe17N3和(NdDy)FeB的(BH)max与工作温度的关系[20]
图2  Sm2Fe17N x 粉末球磨前后的比特花样、矫顽力以及含氧量随球磨时间的变化[35]
图3  在低温和室温下球磨不同时间Sm2Fe17N x 粉体的XRD谱、SEM照片和磁滞回线[38]
图4  用球磨结合等离子放电技术机械合金化制备Sm2Fe17的示意图和氮化后Sm2Fe17N x 样品的退磁曲线[44]
图5  用薄带连铸结合球磨破碎技术制备Sm2(FeCu)17N x
图6  还原扩散法制备流程、还原扩散后(未氮化)块体照片、直接氮化后的照片以及水洗后Sm2Fe17N3粉体的SEM照片[50]
图7  分别用溶胶凝胶法[29]、共沉淀法[10]、水热法[54]和溶剂热解法[56]制备前驱体,再进行还原扩散后的Sm2Fe17N x 的SEM照片和磁化曲线
图8  还原扩散法的新制备流程(缓慢氧化处理)以及样品的SR-XRD谱和退磁曲线[11]
图9  氮原子扩散机制和由Sm2Fe17N x (NP, x<3)向Sm2Fe17N3(FN)相转变引起的晶粒生长机制下的氮元素分布示意图[62]
图10  Sm2Fe17N x /Sm2(Fe,Mn)17N x 核壳粉的制备流程图和示意图、Mn扩散Sm-Fe粉末的截面扫描电镜和元素映射图、Mn扩散Sm-Fe-N核壳粉、无Mn扩散Sm-Fe-N粉热处理前后的退磁曲线[63]以及锌包覆Sm2Fe17N3粉体矫顽力随锌层平均厚度的增加速率[66]
Preparation methodNitridationMorphologyImpurityPropertiesReference

Temperature

/K

Time

/h

Atmosphere

Length

/μm

Ms

/emu·g-1

Mr

/emu·g-1

Hcj

/kOe

Jet-milling technique///1.30/16314712.7[39]
Strip casting technique700~80010~24N20.80α-Fe16015513.0[44]
Strip casting technique69335N20.76/14.2 (kGs)12.5 (kGs)13.0[45]

Reduction-diffusion process

(Polymerized complex)

70310N20.69///23.2[27]

Reduction-diffusion process

(Co-precipitation)

693/

NH3/H2

(1:2 Vol/Vol)

0.90/1259028.1[11]

Reduction-diffusion process

(Hydrothermal)

6931

NH3/H2

(1:2 Vol/Vol)

0.66/14010524.1[53]

Reduction-diffusion process

(Thermal decomposition)

873/

Melamine

(C3H6N6)

0.10/128/15.4[55]
表2  用不同方法制备Sm2Fe17N x 的氮化条件和性能
1 Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6(2): 119
doi: 10.1016/j.eng.2018.11.034
2 Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets [J]. Scr. Mater., 2018, 151: 6
doi: 10.1016/j.scriptamat.2018.03.012
3 Skomski R. Permanent magnets: history, current research, and outlook [J]. Nov. Function. Magn. Mater., 2016: 359
4 Skomski R, Coey J M D. Magnetic anisotropy—How much is enough for a permanent magnet? [J]. Scr. Mater., 2016, 112: 3
doi: 10.1016/j.scriptamat.2015.09.021
5 Yang J B, Kamaraju K, Yelon W B, et al. Magnetic properties of the MnBi intermetallic compound [J]. Appl. Phys. Lett., 2001, 79(12): 1846
doi: 10.1063/1.1405434
6 Sakuma, Akimasa. Electronic structure and magnetocrystalline anisotropy energy of MnAl [J]. J. Phys. Soc. Japan, 1999, 63(4): 1422
doi: 10.1143/JPSJ.63.1422
7 Wang D, Liou S H, He P, et al. SmFe12 and SmFe12N x films fabricated by sputtering [J]. J. magn. Magn. Mater., 1993, 124(1-2): 62
doi: 10.1016/0304-8853(93)90070-I
8 Soda R, Takagi K, Jinno M, et al. Anisotropic Sm2Fe17N3 sintered magnets without coercivity deterioration [J]. AIP Adv., 2016, 6(11): 115108
doi: 10.1063/1.4967364
9 Christodoulou C N, Komada N. High coercivity anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222(1-2): 92
doi: 10.1016/0925-8388(94)04924-6
10 Okada S, Suzuki K, Node E, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process [J]. J. Alloys Compd., 2017, 695: 1617
doi: 10.1016/j.jallcom.2016.10.306
11 Okada S, Node E, Takagi K, et al. Synthesis of Sm2Fe17N3 powder having a new level of high coercivity by preventing decrease of coercivity in washing step of reduction-diffusion process [J]. J. Alloys Compd., 2019, 804: 237
doi: 10.1016/j.jallcom.2019.06.385
12 Givord D, Lemaire R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds [J]. IEEE Trans. Magn., 1974, 10(2): 109-13
13 Li Z W, Morrish A H. Negative exchange interactions and Curie temperatures for Sm2Fe17 and Sm2Fe17N y [J]. Phys. Rev. B, 1997, 55(6): 3670
doi: 10.1103/PhysRevB.55.3670
14 Song C Y, Cheng S W, Wang S H, Zhao D G, Hu L G. Valence electron structure analysis of Curie temperature and magnetic properties of Sm2Fe17N3 [J]. Chin. J. Rare Met., 2019, 12
14 宋春燕, 程世伟, 王书桓 等. Sm2Fe17N3 居里温度及磁性能的价电子结构分析 [J]. 稀有金属, 2019, 12
15 Kuz'min M D, Coey J M D. Magnetocrystalline anisotropy of 3d-4f intermetallics: Breakdown of the linear theory [J]. Phys. Rev. B, 1994, 50(17): 12533
pmid: 9975413
16 Coey J M D, Skomski R, Wirth S. Gas phase interstitial modification of rare-earth intermetallics [J]. IEEE Trans. Magn., 1992, 28(5): 2332-7
17 Coey J M D, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia [J]. J. Magn. Magn. Mater., 1990, 87(3): L251
doi: 10.1016/0304-8853(90)90756-G
18 Iriyama T, Kobayashi K, Imaoka N, et al. Effect of nitrogen content on magnetic properties of Sm2Fe17N x (0<x<6) [J]. IEEE Trans. Magn., 1992, 28(5): 2326
19 Coey J M D, Stamenov P, Porter S B, et al. Sm-Fe-N revisited; remanence enhancement in melt-spun nitroquench material [J]. J. Magn. Magn. Mater., 2019, 480: 186
doi: 10.1016/j.jmmm.2019.02.076
20 Sagawa M, Fujimura S, Togawa N, et al. New material for permanent magnets on a base of Nd and Fe [J]. J. Phys. D, 1984, 55(6): 2083
21 Xing M, Han J, Wan F, et al. Preparation of anisotropic Sm2Fe17N x magnetic materials by strip casting technique [J]. IEEE Trans. Magn., 2013, 49(7): 3248-50.
22 Kou X C, Sinnecker E, Grössinger R, et al. Magnetization reversal process of Zn-bonded anisotropic Sm-Fe-N permanent magnets [J]. Phys. Rev. B, 1995, 51(22): 16025
pmid: 9978584
23 Xing M, Han J, Zhang Y, et al. Nitrogenation effect of Sm2Fe17 alloys prepared by strip casting technique [J]. J. Phys. D, 2015, 117(17): 17A732.
24 Kobayashi K, Skomski R, Coey J M D. Dependence of coercivity on particle size in Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222(1-2): 1
doi: 10.1016/0925-8388(94)04902-5
25 Wendhausen P A P, Gebel B, Eckert D, et al. Effect of milling on the magnetic and microstructural properties of Sm2Fe17N x permanent magnets [J]. J. Phys. D, 1994, 75(10): 6018
26 Matsuura M, Yamamoto K, Tezuka N, et al. Microstructural changes in high-coercivity Zn-bonded Sm-Fe-N magnets [J]. J. Magn. Magn. Mater., 2020, 510: 166943
doi: 10.1016/j.jmmm.2020.166943
27 Zhang D T, Yue M, Zhang J X. Study on bulk Sm2Fe17N x sintered magnets prepared by spark plasma sintering [J]. Powder metal., 2007, 50(3): 215
doi: 10.1179/174329007X169128
28 Dongtao Z, Ming Y, Jiuxing Z. Structure and magnetic properties of Sm2Fe17N x sintering magnets prepared by spark plasma sintering [J]. J. Rare Earths, 2006, 24(1): 325
doi: 10.1016/S1002-0721(07)60392-5
29 Hirayama Y, Panda A K, Ohkubo T, et al. High coercivity Sm2Fe17N3 submicron size powder prepared by polymerized-complex and reduction-diffusion process [J]. Scr. Mater., 2016, 120: 27
doi: 10.1016/j.scriptamat.2016.03.028
30 Yamaguchi W, Soda R, Takagi K. Role of surface iron oxides in coercivity deterioration of Sm2Fe17N3 magnet associated with low temperature sintering [J]. Mater. Trans., 2019, 60(3): 479
doi: 10.2320/matertrans.M2018358
31 Takagi K, Nakayama H, Ozaki K. Microstructural behavior on particle surfaces and interfaces in Sm2Fe17N3 powder compacts during low-temperature sintering [J]. J. Magn. Magn. Mater., 2012, 324(15): 2336
doi: 10.1016/j.jmmm.2012.02.021
32 Schnitzke K, Schultz L, Wecker J, et al. High coercivity in Sm2Fe17N x magnets [J]. Appl. Phys. Lett., 1990, 57(26): 2853
doi: 10.1063/1.104202
33 Yang J, Zhou S Z, Zhang M C, et al. Preparation and magnetic properties of Sm2Fe17N x compound [J]. Mater. Lett., 1991, 12: 242
doi: 10.1016/0167-577X(91)90006-R
34 Ding J, McCormick P G, Street R. Structure and magnetic properties of anisotropic Sm2Fe17N x powders [J]. Appl. Phys. Lett., 1992, 61: 2721
doi: 10.1063/1.108072
35 Wendhausen P A P, Gebel B, Eckert D, et al. Effect of milling on the magnetic and microstructural properties of Sm2Fe17N x permanent magnets [J]. J. Phys. D, 1994, 75: 6018
36 Kobayashi K, Skomski R, Coey J M D. Dependence of coercivity on particle size in Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222: 1
doi: 10.1016/0925-8388(94)04902-5
37 Hu J, Dragon T, Sartorelli M L, et al. Investigation of the domain structure of Sm2Fe17N x intermetallic nitrides [J]. Phys. Status Solidi (a), 1993, 136(1): 207
doi: 10.1002/pssa.2211360125
38 Zhang S L, Liu L D, Du J, et al. Sm2Fe17N x nanoflakes prepared by surfactant assisted cryomilling [J]. J. Phys. D, 2014, 115: 17A706
39 Fang Q, An X, Wang F, et al. The structure and magnetic properties of Sm-Fe-N powders prepared by ball milling at low temperature [J]. J. Magn. Magn. Mater., 2016, 410: 116
doi: 10.1016/j.jmmm.2016.03.029
40 Li Y P, Wang F Q, Liu J P, et al. Fabrication of remarkably magnetic-property-enhanced anisotropic Sm2Fe17N x nanoflakes fabricated by surfactant assisted ball milling at low temperature [J]. J. Magn. Magn. Mater., 2020, 498(15): 166191
doi: 10.1016/j.jmmm.2019.166191
41 Hosokawa A, Yamaguchi W, Suzuki K, et al. Influences of microstructure on macroscopic crystallinity and magnetic properties of Sm-Fe-N fine powder produced by jet-milling [J]. J. Alloys Compd., 2021, 869: 159288
doi: 10.1016/j.jallcom.2021.159288
42 Lv M Q, Song Q H, Sun W S, et al. Preparation of Sm-Fe alloys by mechanical alloying and its crystal-lization and nitriding processes [J]. Acta Metall. Sin., 1992, 28(10): 53
42 吕曼祺, 宋启洪, 孙文声 等. 用机械合金化法制备Sm-Fe合金及其晶化与氮化过程探讨 [J]. 金属学报, 1992, 28(10): 53
43 Kou X C, Qiang W J, Kronmüller H, sl et. Coercivity of Sm-Fe-N ferromagnets produced by the mechanical alloying technique [J]. J. Phys. D, 1993, 74(11): 6791
44 Xu K, Liu Z, Yu H, et al. Improved efficiency for preparing hard magnetic Sm2Fe17N x powders by plasma assisted ball milling followed by nitriding [J]. J. Magn. Magn. Mater., 2020, 500: 166383
doi: 10.1016/j.jmmm.2019.166383
45 Ma X B, Li L Z, Liu S Q, et al. Anisotropic Sm-Fe-N particles prepared by surfactant-assisted grinding method [J]. J. Alloys Compd., 2014, 612: 110
doi: 10.1016/j.jallcom.2014.05.142
46 Lu C, Hong X, Bao X, et al. Changing phase equilibria: A method for microstructure optimization and properties improvement in preparing anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compd., 2019, 784: 980
doi: 10.1016/j.jallcom.2019.01.098
47 Pinkerton F E, Fuerst C D. High-coercivity samarium-iron-nitrogen from nitriding melt-spun ribbons [J]. J. Mater. Eng. Perform., 1993, 2(2): 219
doi: 10.1007/BF02660289
48 Atsushi K, Takashi I, Shinichi Y, et. al . Sm2Fe17N3 magnet powder made by reduction and diffusion method [J]. IEEE Trans. Magn., 1999, 35(5): 3322
49 Ishikawa T, Iseki T, Yokosawa K, et al. Sm-(Fe, Mn) Magnet Powder made by reduction and diffusion method [J]. IEEJ Trans. Fund. Mater., 2004 124(10): 881
50 Ishikawa T, Yokosawa K, Watanabe K, et al. Modified process for high performance anisotropic Sm2Fe17N3 magnet powder [J]. J. Phys. Conf. Ser., 2011, 266: 012033
51 Guo G S, Wang T G, Yu W Y. The preparation of Sm2Fe17N x [J]. Chin. J. Rare Earth, 2005, 26(6): 53
51 郭光思, 王广太, 于伟业 等. Sm2Fe17N x 的制备 [J]. 中国稀土学报, 2005, 26(6): 53
52 Lee J G, Kang S W, Si P Z, et al. The influence of mechanical milling on the structure and magnetic properties of Sm-Fe-N powder produced by the reduction-diffusion process [J]. J. Magn., 2011, 16(2): 104
doi: 10.4283/JMAG.2011.16.2.104
53 Okada S, Takagi K, Ozaki K. Investigation of optimal route to fabricate submicron-sized Sm2Fe17 particles with reduction-diffusion method [J]. AIP Adv., 2016, 6(5): 056018
54 Okada S, Suzuki K, Node E, et al. Improvement of magnetization of submicron-sized high coercivity Sm2Fe17N x powder by using hydrothermally synthesized sintering-tolerant cubic hematite [J]. AIP Adv., 2017, 7(5): 056219
55 Kim J, Wu H L, Hsu S, et al. Nanoparticle approach to the formation of Sm2Fe17N3 hard magnetic particles [J]. Chem. Lett., 2019, 48(9): 1054
doi: 10.1246/cl.190376
56 Shen B, Yu C, Baker A A, et al. Chemical synthesis of magnetically hard and strong rare earth metal based nanomagnets [J]. Angew. Chem. Int. Ed., 2019, 58(2): 602
doi: 10.1002/anie.201812007 pmid: 30414238
57 Zheng J, Tian S, Liu K, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder by ultrasonic spray pyrolysis-hydrogen reduction (USP-HR) and subsequent reduction-diffusion process [J]. AIP Adv., 2020, 10(5): 055119
58 Okada S, Takagi K, Ozaki K, et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique [J]. J. Alloys Compd., 2016, 663: 872
doi: 10.1016/j.jallcom.2015.12.124
59 Onoue M, Kobayashi R, Mitsui Y, et al. Magnetic field-induced nitridation of Sm2Fe17 [J]. J. Alloys Compd., 2020, 835: 155193
doi: 10.1016/j.jallcom.2020.155193
60 Xiao X F, Si P Z, Ge H L, et al. Preparation of Sm-Fe-N by high-pressure N2 nitridation and Sm2Fe17 by a diffusion process [J]. J. Electron. Mater., 2018, 47(12): 7472
doi: 10.1007/s11664-018-6688-5
61 Zhou S Z, Yu S J, Zhang M C, et al. Diffusion of nitrogen atoms during the preparation of Sm2Fe17N y per-manent magnet alloy by gas-solid reaction method [J]. Acta Metall. Sin., 1996, 32(8): 877
61 周寿增, 于申军, 张茂才 等. 气-固相反应法制备Sm2Fe17N y 永磁合金过程中氮原子的扩散 [J]. 金属学报, 1996, 32(8): 877
62 Fujii H, Tatami K, Koyama K. Nitrogenation process in Sm2Fe17 under various N2-gas pressures up to 6 MPa [J]. J. Alloys Compd., 1996, 236(1-2): 156
doi: 10.1016/0925-8388(95)02080-2
63 Matsuura M, Yarimizu K, Osawa Y, et al. Preparation of Mn-diffused Sm-Fe-N core-shell powder by reduction-diffusion process [J]. J. Magn. Magn. Mater., 2019, 471: 310
doi: 10.1016/j.jmmm.2018.09.084
64 Imaoka N, Iriyama T, Itoh S, et al. Effect of Mn addition to Sm-Fe-N magnets on thermal stability of coercivity [J]. J. Alloys Compd., 1995, 222(1): 73
doi: 10.1016/0925-8388(94)04920-3
65 Yamaguchi W, Soda R, Takagi K. Metal-coated Sm2Fe17N3 magnet powders with an oxide-free direct metal-metal interface [J]. J. Magn. Magn. Mater., 2020, 498: 166101
doi: 10.1016/j.jmmm.2019.166101
66 Yamaguchi W, Takagi K. Effects of nonmagnetic overlay metals on coercivity of Sm2Fe17N3 magnet powders [J]. J. Magn. Magn. Mater., 2020, 516: 167327
doi: 10.1016/j.jmmm.2020.167327
67 Matsuura M, Shiraiwa T, Tezuka N, et al. High coercive Zn-bonded Sm-Fe-N magnets prepared using fine Zn particles with low oxygen content [J]. J. Magn. Magn. Mater., 2018, 452: 243
doi: 10.1016/j.jmmm.2017.12.059
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.