|
|
高性能Sm2Fe17N x 粉体制备的研究进展 |
何颖1, 李超群1, 陈小立1, 龙芝梅1, 赖嘉琪1, 邵斌1,2( ), 马毅龙1,2( ), 陈登明1,2, 董季玲1,2 |
1.重庆科技学院冶金与材料工程学院 重庆 401331 2.纳微复合材料与器件重庆市重点实验室 重庆 401331 |
|
Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties |
HE Ying1, LI Chaoqun1, CHEN Xiaoli1, LONG Zhimei1, LAI Jiaqi1, SHAO Bin1,2( ), MA Yilong1,2( ), CHEN Dengming1,2, DONG Jiling1,2 |
1.School of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331, China 2.Chongqing Key Laboratory of Nano-Micro Composites and Devices, Chongqing 401331, China |
引用本文:
何颖, 李超群, 陈小立, 龙芝梅, 赖嘉琪, 邵斌, 马毅龙, 陈登明, 董季玲. 高性能Sm2Fe17N x 粉体制备的研究进展[J]. 材料研究学报, 2022, 36(5): 321-331.
Ying HE,
Chaoqun LI,
Xiaoli CHEN,
Zhimei LONG,
Jiaqi LAI,
Bin SHAO,
Yilong MA,
Dengming CHEN,
Jiling DONG.
Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. Chinese Journal of Materials Research, 2022, 36(5): 321-331.
1 |
Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6(2): 119
doi: 10.1016/j.eng.2018.11.034
|
2 |
Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets [J]. Scr. Mater., 2018, 151: 6
doi: 10.1016/j.scriptamat.2018.03.012
|
3 |
Skomski R. Permanent magnets: history, current research, and outlook [J]. Nov. Function. Magn. Mater., 2016: 359
|
4 |
Skomski R, Coey J M D. Magnetic anisotropy—How much is enough for a permanent magnet? [J]. Scr. Mater., 2016, 112: 3
doi: 10.1016/j.scriptamat.2015.09.021
|
5 |
Yang J B, Kamaraju K, Yelon W B, et al. Magnetic properties of the MnBi intermetallic compound [J]. Appl. Phys. Lett., 2001, 79(12): 1846
doi: 10.1063/1.1405434
|
6 |
Sakuma, Akimasa. Electronic structure and magnetocrystalline anisotropy energy of MnAl [J]. J. Phys. Soc. Japan, 1999, 63(4): 1422
doi: 10.1143/JPSJ.63.1422
|
7 |
Wang D, Liou S H, He P, et al. SmFe12 and SmFe12N x films fabricated by sputtering [J]. J. magn. Magn. Mater., 1993, 124(1-2): 62
doi: 10.1016/0304-8853(93)90070-I
|
8 |
Soda R, Takagi K, Jinno M, et al. Anisotropic Sm2Fe17N3 sintered magnets without coercivity deterioration [J]. AIP Adv., 2016, 6(11): 115108
doi: 10.1063/1.4967364
|
9 |
Christodoulou C N, Komada N. High coercivity anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222(1-2): 92
doi: 10.1016/0925-8388(94)04924-6
|
10 |
Okada S, Suzuki K, Node E, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process [J]. J. Alloys Compd., 2017, 695: 1617
doi: 10.1016/j.jallcom.2016.10.306
|
11 |
Okada S, Node E, Takagi K, et al. Synthesis of Sm2Fe17N3 powder having a new level of high coercivity by preventing decrease of coercivity in washing step of reduction-diffusion process [J]. J. Alloys Compd., 2019, 804: 237
doi: 10.1016/j.jallcom.2019.06.385
|
12 |
Givord D, Lemaire R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds [J]. IEEE Trans. Magn., 1974, 10(2): 109-13
|
13 |
Li Z W, Morrish A H. Negative exchange interactions and Curie temperatures for Sm2Fe17 and Sm2Fe17N y [J]. Phys. Rev. B, 1997, 55(6): 3670
doi: 10.1103/PhysRevB.55.3670
|
14 |
Song C Y, Cheng S W, Wang S H, Zhao D G, Hu L G. Valence electron structure analysis of Curie temperature and magnetic properties of Sm2Fe17N3 [J]. Chin. J. Rare Met., 2019, 12
|
14 |
宋春燕, 程世伟, 王书桓 等. Sm2Fe17N3 居里温度及磁性能的价电子结构分析 [J]. 稀有金属, 2019, 12
|
15 |
Kuz'min M D, Coey J M D. Magnetocrystalline anisotropy of 3d-4f intermetallics: Breakdown of the linear theory [J]. Phys. Rev. B, 1994, 50(17): 12533
pmid: 9975413
|
16 |
Coey J M D, Skomski R, Wirth S. Gas phase interstitial modification of rare-earth intermetallics [J]. IEEE Trans. Magn., 1992, 28(5): 2332-7
|
17 |
Coey J M D, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia [J]. J. Magn. Magn. Mater., 1990, 87(3): L251
doi: 10.1016/0304-8853(90)90756-G
|
18 |
Iriyama T, Kobayashi K, Imaoka N, et al. Effect of nitrogen content on magnetic properties of Sm2Fe17N x (0<x<6) [J]. IEEE Trans. Magn., 1992, 28(5): 2326
|
19 |
Coey J M D, Stamenov P, Porter S B, et al. Sm-Fe-N revisited; remanence enhancement in melt-spun nitroquench material [J]. J. Magn. Magn. Mater., 2019, 480: 186
doi: 10.1016/j.jmmm.2019.02.076
|
20 |
Sagawa M, Fujimura S, Togawa N, et al. New material for permanent magnets on a base of Nd and Fe [J]. J. Phys. D, 1984, 55(6): 2083
|
21 |
Xing M, Han J, Wan F, et al. Preparation of anisotropic Sm2Fe17N x magnetic materials by strip casting technique [J]. IEEE Trans. Magn., 2013, 49(7): 3248-50.
|
22 |
Kou X C, Sinnecker E, Grössinger R, et al. Magnetization reversal process of Zn-bonded anisotropic Sm-Fe-N permanent magnets [J]. Phys. Rev. B, 1995, 51(22): 16025
pmid: 9978584
|
23 |
Xing M, Han J, Zhang Y, et al. Nitrogenation effect of Sm2Fe17 alloys prepared by strip casting technique [J]. J. Phys. D, 2015, 117(17): 17A732.
|
24 |
Kobayashi K, Skomski R, Coey J M D. Dependence of coercivity on particle size in Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222(1-2): 1
doi: 10.1016/0925-8388(94)04902-5
|
25 |
Wendhausen P A P, Gebel B, Eckert D, et al. Effect of milling on the magnetic and microstructural properties of Sm2Fe17N x permanent magnets [J]. J. Phys. D, 1994, 75(10): 6018
|
26 |
Matsuura M, Yamamoto K, Tezuka N, et al. Microstructural changes in high-coercivity Zn-bonded Sm-Fe-N magnets [J]. J. Magn. Magn. Mater., 2020, 510: 166943
doi: 10.1016/j.jmmm.2020.166943
|
27 |
Zhang D T, Yue M, Zhang J X. Study on bulk Sm2Fe17N x sintered magnets prepared by spark plasma sintering [J]. Powder metal., 2007, 50(3): 215
doi: 10.1179/174329007X169128
|
28 |
Dongtao Z, Ming Y, Jiuxing Z. Structure and magnetic properties of Sm2Fe17N x sintering magnets prepared by spark plasma sintering [J]. J. Rare Earths, 2006, 24(1): 325
doi: 10.1016/S1002-0721(07)60392-5
|
29 |
Hirayama Y, Panda A K, Ohkubo T, et al. High coercivity Sm2Fe17N3 submicron size powder prepared by polymerized-complex and reduction-diffusion process [J]. Scr. Mater., 2016, 120: 27
doi: 10.1016/j.scriptamat.2016.03.028
|
30 |
Yamaguchi W, Soda R, Takagi K. Role of surface iron oxides in coercivity deterioration of Sm2Fe17N3 magnet associated with low temperature sintering [J]. Mater. Trans., 2019, 60(3): 479
doi: 10.2320/matertrans.M2018358
|
31 |
Takagi K, Nakayama H, Ozaki K. Microstructural behavior on particle surfaces and interfaces in Sm2Fe17N3 powder compacts during low-temperature sintering [J]. J. Magn. Magn. Mater., 2012, 324(15): 2336
doi: 10.1016/j.jmmm.2012.02.021
|
32 |
Schnitzke K, Schultz L, Wecker J, et al. High coercivity in Sm2Fe17N x magnets [J]. Appl. Phys. Lett., 1990, 57(26): 2853
doi: 10.1063/1.104202
|
33 |
Yang J, Zhou S Z, Zhang M C, et al. Preparation and magnetic properties of Sm2Fe17N x compound [J]. Mater. Lett., 1991, 12: 242
doi: 10.1016/0167-577X(91)90006-R
|
34 |
Ding J, McCormick P G, Street R. Structure and magnetic properties of anisotropic Sm2Fe17N x powders [J]. Appl. Phys. Lett., 1992, 61: 2721
doi: 10.1063/1.108072
|
35 |
Wendhausen P A P, Gebel B, Eckert D, et al. Effect of milling on the magnetic and microstructural properties of Sm2Fe17N x permanent magnets [J]. J. Phys. D, 1994, 75: 6018
|
36 |
Kobayashi K, Skomski R, Coey J M D. Dependence of coercivity on particle size in Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222: 1
doi: 10.1016/0925-8388(94)04902-5
|
37 |
Hu J, Dragon T, Sartorelli M L, et al. Investigation of the domain structure of Sm2Fe17N x intermetallic nitrides [J]. Phys. Status Solidi (a), 1993, 136(1): 207
doi: 10.1002/pssa.2211360125
|
38 |
Zhang S L, Liu L D, Du J, et al. Sm2Fe17N x nanoflakes prepared by surfactant assisted cryomilling [J]. J. Phys. D, 2014, 115: 17A706
|
39 |
Fang Q, An X, Wang F, et al. The structure and magnetic properties of Sm-Fe-N powders prepared by ball milling at low temperature [J]. J. Magn. Magn. Mater., 2016, 410: 116
doi: 10.1016/j.jmmm.2016.03.029
|
40 |
Li Y P, Wang F Q, Liu J P, et al. Fabrication of remarkably magnetic-property-enhanced anisotropic Sm2Fe17N x nanoflakes fabricated by surfactant assisted ball milling at low temperature [J]. J. Magn. Magn. Mater., 2020, 498(15): 166191
doi: 10.1016/j.jmmm.2019.166191
|
41 |
Hosokawa A, Yamaguchi W, Suzuki K, et al. Influences of microstructure on macroscopic crystallinity and magnetic properties of Sm-Fe-N fine powder produced by jet-milling [J]. J. Alloys Compd., 2021, 869: 159288
doi: 10.1016/j.jallcom.2021.159288
|
42 |
Lv M Q, Song Q H, Sun W S, et al. Preparation of Sm-Fe alloys by mechanical alloying and its crystal-lization and nitriding processes [J]. Acta Metall. Sin., 1992, 28(10): 53
|
42 |
吕曼祺, 宋启洪, 孙文声 等. 用机械合金化法制备Sm-Fe合金及其晶化与氮化过程探讨 [J]. 金属学报, 1992, 28(10): 53
|
43 |
Kou X C, Qiang W J, Kronmüller H, sl et. Coercivity of Sm-Fe-N ferromagnets produced by the mechanical alloying technique [J]. J. Phys. D, 1993, 74(11): 6791
|
44 |
Xu K, Liu Z, Yu H, et al. Improved efficiency for preparing hard magnetic Sm2Fe17N x powders by plasma assisted ball milling followed by nitriding [J]. J. Magn. Magn. Mater., 2020, 500: 166383
doi: 10.1016/j.jmmm.2019.166383
|
45 |
Ma X B, Li L Z, Liu S Q, et al. Anisotropic Sm-Fe-N particles prepared by surfactant-assisted grinding method [J]. J. Alloys Compd., 2014, 612: 110
doi: 10.1016/j.jallcom.2014.05.142
|
46 |
Lu C, Hong X, Bao X, et al. Changing phase equilibria: A method for microstructure optimization and properties improvement in preparing anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compd., 2019, 784: 980
doi: 10.1016/j.jallcom.2019.01.098
|
47 |
Pinkerton F E, Fuerst C D. High-coercivity samarium-iron-nitrogen from nitriding melt-spun ribbons [J]. J. Mater. Eng. Perform., 1993, 2(2): 219
doi: 10.1007/BF02660289
|
48 |
Atsushi K, Takashi I, Shinichi Y, et. al . Sm2Fe17N3 magnet powder made by reduction and diffusion method [J]. IEEE Trans. Magn., 1999, 35(5): 3322
|
49 |
Ishikawa T, Iseki T, Yokosawa K, et al. Sm-(Fe, Mn) Magnet Powder made by reduction and diffusion method [J]. IEEJ Trans. Fund. Mater., 2004 124(10): 881
|
50 |
Ishikawa T, Yokosawa K, Watanabe K, et al. Modified process for high performance anisotropic Sm2Fe17N3 magnet powder [J]. J. Phys. Conf. Ser., 2011, 266: 012033
|
51 |
Guo G S, Wang T G, Yu W Y. The preparation of Sm2Fe17N x [J]. Chin. J. Rare Earth, 2005, 26(6): 53
|
51 |
郭光思, 王广太, 于伟业 等. Sm2Fe17N x 的制备 [J]. 中国稀土学报, 2005, 26(6): 53
|
52 |
Lee J G, Kang S W, Si P Z, et al. The influence of mechanical milling on the structure and magnetic properties of Sm-Fe-N powder produced by the reduction-diffusion process [J]. J. Magn., 2011, 16(2): 104
doi: 10.4283/JMAG.2011.16.2.104
|
53 |
Okada S, Takagi K, Ozaki K. Investigation of optimal route to fabricate submicron-sized Sm2Fe17 particles with reduction-diffusion method [J]. AIP Adv., 2016, 6(5): 056018
|
54 |
Okada S, Suzuki K, Node E, et al. Improvement of magnetization of submicron-sized high coercivity Sm2Fe17N x powder by using hydrothermally synthesized sintering-tolerant cubic hematite [J]. AIP Adv., 2017, 7(5): 056219
|
55 |
Kim J, Wu H L, Hsu S, et al. Nanoparticle approach to the formation of Sm2Fe17N3 hard magnetic particles [J]. Chem. Lett., 2019, 48(9): 1054
doi: 10.1246/cl.190376
|
56 |
Shen B, Yu C, Baker A A, et al. Chemical synthesis of magnetically hard and strong rare earth metal based nanomagnets [J]. Angew. Chem. Int. Ed., 2019, 58(2): 602
doi: 10.1002/anie.201812007
pmid: 30414238
|
57 |
Zheng J, Tian S, Liu K, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder by ultrasonic spray pyrolysis-hydrogen reduction (USP-HR) and subsequent reduction-diffusion process [J]. AIP Adv., 2020, 10(5): 055119
|
58 |
Okada S, Takagi K, Ozaki K, et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique [J]. J. Alloys Compd., 2016, 663: 872
doi: 10.1016/j.jallcom.2015.12.124
|
59 |
Onoue M, Kobayashi R, Mitsui Y, et al. Magnetic field-induced nitridation of Sm2Fe17 [J]. J. Alloys Compd., 2020, 835: 155193
doi: 10.1016/j.jallcom.2020.155193
|
60 |
Xiao X F, Si P Z, Ge H L, et al. Preparation of Sm-Fe-N by high-pressure N2 nitridation and Sm2Fe17 by a diffusion process [J]. J. Electron. Mater., 2018, 47(12): 7472
doi: 10.1007/s11664-018-6688-5
|
61 |
Zhou S Z, Yu S J, Zhang M C, et al. Diffusion of nitrogen atoms during the preparation of Sm2Fe17N y per-manent magnet alloy by gas-solid reaction method [J]. Acta Metall. Sin., 1996, 32(8): 877
|
61 |
周寿增, 于申军, 张茂才 等. 气-固相反应法制备Sm2Fe17N y 永磁合金过程中氮原子的扩散 [J]. 金属学报, 1996, 32(8): 877
|
62 |
Fujii H, Tatami K, Koyama K. Nitrogenation process in Sm2Fe17 under various N2-gas pressures up to 6 MPa [J]. J. Alloys Compd., 1996, 236(1-2): 156
doi: 10.1016/0925-8388(95)02080-2
|
63 |
Matsuura M, Yarimizu K, Osawa Y, et al. Preparation of Mn-diffused Sm-Fe-N core-shell powder by reduction-diffusion process [J]. J. Magn. Magn. Mater., 2019, 471: 310
doi: 10.1016/j.jmmm.2018.09.084
|
64 |
Imaoka N, Iriyama T, Itoh S, et al. Effect of Mn addition to Sm-Fe-N magnets on thermal stability of coercivity [J]. J. Alloys Compd., 1995, 222(1): 73
doi: 10.1016/0925-8388(94)04920-3
|
65 |
Yamaguchi W, Soda R, Takagi K. Metal-coated Sm2Fe17N3 magnet powders with an oxide-free direct metal-metal interface [J]. J. Magn. Magn. Mater., 2020, 498: 166101
doi: 10.1016/j.jmmm.2019.166101
|
66 |
Yamaguchi W, Takagi K. Effects of nonmagnetic overlay metals on coercivity of Sm2Fe17N3 magnet powders [J]. J. Magn. Magn. Mater., 2020, 516: 167327
doi: 10.1016/j.jmmm.2020.167327
|
67 |
Matsuura M, Shiraiwa T, Tezuka N, et al. High coercive Zn-bonded Sm-Fe-N magnets prepared using fine Zn particles with low oxygen content [J]. J. Magn. Magn. Mater., 2018, 452: 243
doi: 10.1016/j.jmmm.2017.12.059
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|