Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 862-870    DOI: 10.11901/1005.3093.2021.397
  研究论文 本期目录 | 过刊浏览 |
铁离子掺杂TiO2 的制备及其光催化性能
荆倩, 曹晗, 刘方园, 郗会娟, 李超祥, 邵韵航, 曹美文, 夏永清, 王生杰()
中国石油大学(华东)化学工程学院 青岛 266580
Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials
JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie()
College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
引用本文:

荆倩, 曹晗, 刘方园, 郗会娟, 李超祥, 邵韵航, 曹美文, 夏永清, 王生杰. 铁离子掺杂TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(11): 862-870.
Qian JING, Han CAO, Fangyuan LIU, Huijuan XI, Chaoxiang LI, Yunhang SHAO, Meiwen CAO, Yongqing XIA, Shengjie WANG. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. Chinese Journal of Materials Research, 2022, 36(11): 862-870.

全文: PDF(3706 KB)   HTML
摘要: 

将Bola型两亲性短肽KI3E在水溶液中组装成稳定的纤维状结构,以其自组装体作为有机模板并使用氨丙基三乙氧基硅烷为结构导向剂,利用其对TiO2前驱体-二(2-羟基丙酸)二氢氧化二铵合钛的水解催化作用以及肽模板与铁离子之间的分子识别作用在TiO2矿化沉积的同时引入铁离子,在温和的水溶液中制备出铁离子掺杂TiO2纳米材料。使用TEM、BET、UV-vis DRS、XPS、XRD等手段对其结构和性能进行了表征。结果表明,铁元素以Fe2+/Fe3+的形式存在于TiO2晶格中,抑制了晶体生长并使晶粒尺寸变小。同时,铁离子的掺杂减小了TiO2的禁带宽度,提高了对可见光的响应和催化性质。铁离子掺杂量为0.5% TiO2,其光催化性能最好。

关键词 无机非金属材料TiO2离子掺杂Bola型两亲性短肽光催化    
Abstract

Iron-doped titanium dioxide (Fe-TiO2) nanomaterials were prepared with the stable fibrous nanostructure of self-assembled bola-type amphiphilic short peptide KI3E as organic templateand aminopropyl triethoxysilane as structure-directing agent via sol-gel process to ensure the simultaneous deposition of the titanium dioxide precursor and iron ions on the surface of the peptide templates. The Fe doped-TiO2 nanomaterials were fully characterized by Transmission electron microscope, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometer. The results show that iron ions instead of partial titanium ions in the crystal lattice of titanium dioxide, which narrows the band gap of TiO2 and results in enhanced visible light responses. The test results of photocatalytic degradation of rhodamine B and methylene blue indicated that the Fe doped-TiO2 possessed significantly enhanced photocatalytic performance, compared to the commercial TiO2 (P25), while reached a maximum when the doping content of iron ions was 0.5%.

Key wordsinorganic non-metallic materials    titanium dioxide    iron-doping    bola amphiphilic short-peptide    photocatalysis
收稿日期: 2021-07-08     
ZTFLH:  O643  
基金资助:国家自然科学基金(21773310);山东省重点科技研发计划(2019GGX103047);山东省自然科学基金(ZR2020MB076)
作者简介: 荆倩,女,1993年生,硕士
图1  KI3E分子结构式、KI3E的圆二色光谱、KI3E的红外光谱、KI3E在pH=10条件下的透射电镜图片以及KI3E在pH=10条件下的原子力高度
图2  Fe-TiO2纳米材料的合成过程示意图和Fe-TiO2纳米材料的透射电镜照片
SampleFe:Ti/%, mass fractionContent/%

BET surface area

/m2·g-1

Pore volume

/cm3·g-1

Average pore size

/nm

Fe2+Fe3+
FT-0.250.25100053.250.326.3
FT-0.50.34100061.590.266.7
FT-10.89100064.490.305.4
FT-21.82604073.540.263.8
FT-54.72554578.920.244.6
FT-109.51455586.210.192.8
FT-1511.49406095.310.173.4
表1  掺杂剂用量不同时铁的实际掺杂含量、各价态铁的含量、比表面积、孔体积以及孔尺寸
图3  铁掺杂量不同的Fe-TiO2纳米材料和P25的禁带宽度
图4  样品FT-0,FT-0.5和FT-15的XPS元素分析的全谱、Fe 2p谱、O 1s谱以及Ti 2p谱
图5  样品Fe-TiO2的XRD谱、Fe2O3和锐钛矿型TiO2的标准XRD谱
SampleLattice constantGrain size /nm
a/nmc/nm
FT-00.3780.9458.7
FT-0.250.3770.9247.1
FT-0.50.3770.9066.7
FT-10.3780.9326.5
FT-20.3780.9266.2
FT-50.3780.8975.9
FT-100.3760.8865.6
FT-150.3760.8925.3
表2  Fe-TiO2样品的晶体学数据
图6  (a)Fe-TiO2光催化原理图;铁掺杂量不同的Fe-TiO2材料和P25在可见光下对有机污染物罗丹明(b);亚甲基蓝(c)的降解作用与时间的关系曲线;(d)FT-0.5催化罗丹明B的循环测试
MaterialsModel PollutantLight sourcePhotocatalytic degradation measure
Fe-TiO2(this work)

RhB

Mb

300 W Xe lamp(>400 nm)90% degradation after 3 h
N-TiO2[37]RhB350 W Xe lamp (≥420 nm)90.3% degradation after 2 h
XFJ-Co-TPP-TiO2[38]RhB150 W Xe lamp90% degradation after 1 h
MB90% degradation after 2 h
Fe-TiO2[39]RhB240 W tungsten bulb70% degradation after 1.5 h
Fe-S/TiO2[40]MB40 W LED lamp90% degradation after 2 h
Fe-Ti/SF[41]MB300 W Xe lamp94.2% degradation after 2 h
表3  TiO2光催化剂降解模型污染物近期研究结果的比较
1 Hu J D, Xie J, Jia W, et al. Interesting molecule adsorption strategy induced energy band tuning: Boosts 43 times photocatalytic Water splitting ability for commercial TiO2 [J]. Appl. Catal., 2020, 268B: 118753
2 Liu J Y, Gong X Q, Li R X, et al. (Photo)Electrocatalytic CO2 reduction at the defective anatase TiO2 (101) surface [J]. ACS Catal., 2020, 10: 4048
doi: 10.1021/acscatal.0c00947
3 Xu L Y, Xiu Y, Liu F Y, et al. Research progress in conversion of CO2 to valuable fuels [J]. Molecules, 2020, 25: 3653
doi: 10.3390/molecules25163653
4 Zhu L F, Shi J J, Li D M, et al. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells [J]. Acta Chim. Sin., 2015, 73: 261
4 朱立峰, 石将建, 李冬梅 等. 多孔TiO2层厚度对钙钛矿太阳能电池性能的影响 [J]. 化学学报, 2015, 73: 261
doi: 10.6023/A14110823
5 Xie F Y, Li Y F, Dou J, et al. Facile synthesis of SnO2 coated urchin-like TiO2 hollow microspheres as efficient scattering layer for dye-sensitized solar cells [J]. J. Power Sources, 2016, 336: 143
doi: 10.1016/j.jpowsour.2016.10.061
6 Thapa A, Zai J T, Elbohy H, et al. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells [J]. Nano Res., 2014, 7: 1154
doi: 10.1007/s12274-014-0478-z
7 Yun J Y N, Hwang S H, Jang J. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2015, 7: 2055
doi: 10.1021/am508065n
8 Chen Y F, Huang W X, He D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 14405
doi: 10.1021/am503674e
9 Mao C Y, Zuo F, Hou Y, et al. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction [J]. Angew. Chem. Int. Ed., 2014, 53: 10485
doi: 10.1002/anie.201406017
10 Liu F Y, Xu L Y, Xiu Y, et al. Non-metallic element doped titanium dioxide [J]. Chemistry, 2021, 84: 108
10 刘方园, 徐鲁艺, 修 阳 等. 非金属元素掺杂纳米二氧化钛 [J]. 化学通报, 2021, 84: 108
11 Sotelo-Vazquez C, Noor N, Kafizas A, et al. Multifunctional P-Doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials [J]. Chem. Mater., 2015, 27: 3234
doi: 10.1021/cm504734a
12 Chakhari W, Ben Naceur J, Taieb S, et al. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials [J]. J. Alloys Compd., 2016, 708: 862
doi: 10.1016/j.jallcom.2016.12.181
13 Sumerel J L, Yang W J, Kisailus D, et al. Biocatalytically templated synthesis of titanium dioxide [J]. Chem. Mater., 2003, 15: 4804
doi: 10.1021/cm030254u
14 Li Q, Zhang J X, Wang Y F, et al. Chem. Eur. J., 2018, 24: 18123
doi: 10.1002/chem.201804514
15 Nonoyama T, Kinoshita T, Higuchi M, et al. TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process [J]. J. Am. Chem. Soc., 2012, 134: 8841
doi: 10.1021/ja211347n
16 Wang S J, Cui B S, Cai Q W, et al. Fabrication of highly luminescent SiO2-Au nanostructures and their application in detection of trace Hg2+ [J]. J. Mater. Sci., 2019, 54: 7517
17 Xiu Y, Zhang X, Feng Y F, et al. Peptide-mediated porphyrin based hierarchical complexes for light-to-chemical conversion [J]. Nanoscale, 2020, 12: 15201
doi: 10.1039/d0nr03124k pmid: 32638799
18 Xiu Y, Zhang D X, Xu L Y, et al. Bioinspired construction of light-harvesting antenna via hierarchically co-assembling approach [J]. J. Colloid Interface Sci., 2021, 587: 550
doi: 10.1016/j.jcis.2020.11.012
19 Wang S J, Xue J Y, Ge X, et al. Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through tuning interfacial interactions [J]. Chem. Commun., 2012, 48: 9415
doi: 10.1039/c2cc34667b
20 Wang S J, Ge X, Xue J Y, et al. Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates [J]. Chem. Mater., 2011, 23: 2466
doi: 10.1021/cm2003885
21 Xiu Y, Xu L Y, Zhang X, et al. Mechanistic process understanding of the biomimetic construction of porphyrin-based light-capturing antennas from self-assembled Fmoc-blocked peptide templates [J]. ACS Sustainable Chem. Eng., 2020, 8: 15761
doi: 10.1021/acssuschemeng.0c06191
22 Xie M X, Liu Y. Studies on amide Ⅲ infrared bands for the secondary structure determination of proteins [J]. Chem. Res. Chin. Univ., 2003, 24: 226
doi: 10.1016/S1005-9040(08)60047-1
22 谢孟峡, 刘 媛. 红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究 [J]. 高等学校化学学报, 2003, 24: 226
23 Hegde M S, Nagaveni K, Roy S. Synthesis, structure and photocatalytic activity of nano TiO2 and nano Ti1- xMx O2- δ (M=Cu, Fe, Pt, Pd, V, W, Ce, Zr) [J]. Pramana, 2005, 65: 641
doi: 10.1007/BF03010452
24 Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem., 98: 13669
25 Zielińska B, Grzechulska J, Grzmil B, et al. Photocatalytic degradation of reactive black 5: A comparison between TiO2-tytanpol A11 and TiO2-degussa P25 photocatalysts [J]. Appl. Catal., 2001, 35B: L1
26 Apopei P, Catrinescu C, Teodosiu C, et al. Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents [J]. Appl. Catal., 2014, 160-161B: 374
27 Wu Y Z, Ward-Bond J, Li D L, et al. g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration [J]. ACS. Catal., 2018, 8: 5664
doi: 10.1021/acscatal.8b00070
28 Tang S Q, He J P, Zhang Z. Synthesis and photocatalytic activity of Fe-doped mesoporous TiO2 powder [J]. J. Chin. Ceram. Soc., 2012, 40: 951
28 唐守强, 何菁萍, 张 昭. 铁掺杂介孔二氧化钛的制备及其光催化性能 [J]. 硅酸盐学报, 2012, 40: 951
29 Zou M M, Xiong F Q, Ganeshraja A S, et al. Visible light photocatalysts (Fe, N):TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres. [J]. Mater. Chem. Phys., 2017, 195: 259
doi: 10.1016/j.matchemphys.2017.04.035
30 Abazović N D, Mirenghi L, Janković I A, et al. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions [J]. Nanoscale Res. Lett., 2009, 4: 518
doi: 10.1007/s11671-009-9274-1 pmid: 20596442
31 He C, Yu Y, Hu X F, et al. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder [J]. J. Eur. Ceram. Soc., 2003, 23: 1457
doi: 10.1016/S0955-2219(02)00356-4
32 Ren W J, Ai Z H, Jia F L, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Appl. Catal., 2007, 69B: 138
33 Zhang Y S, Kirk C, Robertson N. Nitrogen doping and carbon coating affects substrate selectivity of TiO2 photocatalytic organic pollutant degradation [J]. Chem. Phys. Chem., 2020, 21: 2643
34 Xu G, Zhang Y, Peng D D, et al. Nitrogen-doped mixed-phase TiO2 with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane [J]. Appl. Surf. Sci., 2021, 536: 147953
doi: 10.1016/j.apsusc.2020.147953
35 Wang R, Shi M S, Xu F Y, et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection [J]. Nat. Commun., 2020, 11: 4465
doi: 10.1038/s41467-020-18267-1 pmid: 32901012
36 Ökte A N, Akalın Ş. Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity [J]. React. Kinet. Mech. Catal., 2010, 100: 55
37 Cheng X W, Yu X J, Xing Z P, et al. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity [J]. Arab. J. Chem., 2016, 9(): S1706
doi: 10.1016/j.arabjc.2012.04.052
38 Niu J F, Han G C, Dai P X, et al. Preparation and photocatalytic activity of schiff base cobalt porphyrin-TiO2 composites [J]. Chin. J. Mater. Res., 2016, 30: 947
38 钮金芬, 韩广超, 戴佩璇 等. 席夫碱钴卟啉-TiO2复合光催化剂的制备及其光催化性能研究 [J]. 材料研究学报, 2016, 30: 947
doi: 10.11901/1005.3093.2016.174
39 Barkhade T, Banerjee I. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites [J]. AIP Conf. Proc., 2018, 1961: 030016
40 Zolfaghari A, Riazian M, Ashjari M. Preparation and photodeposition of Fe-S/TiO2@PEG nanoparticles for methylene blue and Evans blue [J]. Res. Chem. Intermed., 2021, 47: 1809
doi: 10.1007/s11164-021-04396-9
41 Xu J S, Zhang T, Zhang J. Photocatalytic degradation of methylene blue with spent FCC catalyst loaded with ferric oxide and titanium dioxide [J]. Sci. Rep., 2020, 10: 12730
doi: 10.1038/s41598-020-69643-2 pmid: 32728146
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.