|
|
铁离子掺杂TiO2 的制备及其光催化性能 |
荆倩, 曹晗, 刘方园, 郗会娟, 李超祥, 邵韵航, 曹美文, 夏永清, 王生杰( ) |
中国石油大学(华东)化学工程学院 青岛 266580 |
|
Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials |
JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie( ) |
College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China |
引用本文:
荆倩, 曹晗, 刘方园, 郗会娟, 李超祥, 邵韵航, 曹美文, 夏永清, 王生杰. 铁离子掺杂TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(11): 862-870.
Qian JING,
Han CAO,
Fangyuan LIU,
Huijuan XI,
Chaoxiang LI,
Yunhang SHAO,
Meiwen CAO,
Yongqing XIA,
Shengjie WANG.
Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. Chinese Journal of Materials Research, 2022, 36(11): 862-870.
1 |
Hu J D, Xie J, Jia W, et al. Interesting molecule adsorption strategy induced energy band tuning: Boosts 43 times photocatalytic Water splitting ability for commercial TiO2 [J]. Appl. Catal., 2020, 268B: 118753
|
2 |
Liu J Y, Gong X Q, Li R X, et al. (Photo)Electrocatalytic CO2 reduction at the defective anatase TiO2 (101) surface [J]. ACS Catal., 2020, 10: 4048
doi: 10.1021/acscatal.0c00947
|
3 |
Xu L Y, Xiu Y, Liu F Y, et al. Research progress in conversion of CO2 to valuable fuels [J]. Molecules, 2020, 25: 3653
doi: 10.3390/molecules25163653
|
4 |
Zhu L F, Shi J J, Li D M, et al. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells [J]. Acta Chim. Sin., 2015, 73: 261
|
4 |
朱立峰, 石将建, 李冬梅 等. 多孔TiO2层厚度对钙钛矿太阳能电池性能的影响 [J]. 化学学报, 2015, 73: 261
doi: 10.6023/A14110823
|
5 |
Xie F Y, Li Y F, Dou J, et al. Facile synthesis of SnO2 coated urchin-like TiO2 hollow microspheres as efficient scattering layer for dye-sensitized solar cells [J]. J. Power Sources, 2016, 336: 143
doi: 10.1016/j.jpowsour.2016.10.061
|
6 |
Thapa A, Zai J T, Elbohy H, et al. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells [J]. Nano Res., 2014, 7: 1154
doi: 10.1007/s12274-014-0478-z
|
7 |
Yun J Y N, Hwang S H, Jang J. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2015, 7: 2055
doi: 10.1021/am508065n
|
8 |
Chen Y F, Huang W X, He D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 14405
doi: 10.1021/am503674e
|
9 |
Mao C Y, Zuo F, Hou Y, et al. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction [J]. Angew. Chem. Int. Ed., 2014, 53: 10485
doi: 10.1002/anie.201406017
|
10 |
Liu F Y, Xu L Y, Xiu Y, et al. Non-metallic element doped titanium dioxide [J]. Chemistry, 2021, 84: 108
|
10 |
刘方园, 徐鲁艺, 修 阳 等. 非金属元素掺杂纳米二氧化钛 [J]. 化学通报, 2021, 84: 108
|
11 |
Sotelo-Vazquez C, Noor N, Kafizas A, et al. Multifunctional P-Doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials [J]. Chem. Mater., 2015, 27: 3234
doi: 10.1021/cm504734a
|
12 |
Chakhari W, Ben Naceur J, Taieb S, et al. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials [J]. J. Alloys Compd., 2016, 708: 862
doi: 10.1016/j.jallcom.2016.12.181
|
13 |
Sumerel J L, Yang W J, Kisailus D, et al. Biocatalytically templated synthesis of titanium dioxide [J]. Chem. Mater., 2003, 15: 4804
doi: 10.1021/cm030254u
|
14 |
Li Q, Zhang J X, Wang Y F, et al. Chem. Eur. J., 2018, 24: 18123
doi: 10.1002/chem.201804514
|
15 |
Nonoyama T, Kinoshita T, Higuchi M, et al. TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process [J]. J. Am. Chem. Soc., 2012, 134: 8841
doi: 10.1021/ja211347n
|
16 |
Wang S J, Cui B S, Cai Q W, et al. Fabrication of highly luminescent SiO2-Au nanostructures and their application in detection of trace Hg2+ [J]. J. Mater. Sci., 2019, 54: 7517
|
17 |
Xiu Y, Zhang X, Feng Y F, et al. Peptide-mediated porphyrin based hierarchical complexes for light-to-chemical conversion [J]. Nanoscale, 2020, 12: 15201
doi: 10.1039/d0nr03124k
pmid: 32638799
|
18 |
Xiu Y, Zhang D X, Xu L Y, et al. Bioinspired construction of light-harvesting antenna via hierarchically co-assembling approach [J]. J. Colloid Interface Sci., 2021, 587: 550
doi: 10.1016/j.jcis.2020.11.012
|
19 |
Wang S J, Xue J Y, Ge X, et al. Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through tuning interfacial interactions [J]. Chem. Commun., 2012, 48: 9415
doi: 10.1039/c2cc34667b
|
20 |
Wang S J, Ge X, Xue J Y, et al. Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates [J]. Chem. Mater., 2011, 23: 2466
doi: 10.1021/cm2003885
|
21 |
Xiu Y, Xu L Y, Zhang X, et al. Mechanistic process understanding of the biomimetic construction of porphyrin-based light-capturing antennas from self-assembled Fmoc-blocked peptide templates [J]. ACS Sustainable Chem. Eng., 2020, 8: 15761
doi: 10.1021/acssuschemeng.0c06191
|
22 |
Xie M X, Liu Y. Studies on amide Ⅲ infrared bands for the secondary structure determination of proteins [J]. Chem. Res. Chin. Univ., 2003, 24: 226
doi: 10.1016/S1005-9040(08)60047-1
|
22 |
谢孟峡, 刘 媛. 红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究 [J]. 高等学校化学学报, 2003, 24: 226
|
23 |
Hegde M S, Nagaveni K, Roy S. Synthesis, structure and photocatalytic activity of nano TiO2 and nano Ti1- xMx O2- δ (M=Cu, Fe, Pt, Pd, V, W, Ce, Zr) [J]. Pramana, 2005, 65: 641
doi: 10.1007/BF03010452
|
24 |
Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem., 98: 13669
|
25 |
Zielińska B, Grzechulska J, Grzmil B, et al. Photocatalytic degradation of reactive black 5: A comparison between TiO2-tytanpol A11 and TiO2-degussa P25 photocatalysts [J]. Appl. Catal., 2001, 35B: L1
|
26 |
Apopei P, Catrinescu C, Teodosiu C, et al. Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents [J]. Appl. Catal., 2014, 160-161B: 374
|
27 |
Wu Y Z, Ward-Bond J, Li D L, et al. g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration [J]. ACS. Catal., 2018, 8: 5664
doi: 10.1021/acscatal.8b00070
|
28 |
Tang S Q, He J P, Zhang Z. Synthesis and photocatalytic activity of Fe-doped mesoporous TiO2 powder [J]. J. Chin. Ceram. Soc., 2012, 40: 951
|
28 |
唐守强, 何菁萍, 张 昭. 铁掺杂介孔二氧化钛的制备及其光催化性能 [J]. 硅酸盐学报, 2012, 40: 951
|
29 |
Zou M M, Xiong F Q, Ganeshraja A S, et al. Visible light photocatalysts (Fe, N):TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres. [J]. Mater. Chem. Phys., 2017, 195: 259
doi: 10.1016/j.matchemphys.2017.04.035
|
30 |
Abazović N D, Mirenghi L, Janković I A, et al. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions [J]. Nanoscale Res. Lett., 2009, 4: 518
doi: 10.1007/s11671-009-9274-1
pmid: 20596442
|
31 |
He C, Yu Y, Hu X F, et al. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder [J]. J. Eur. Ceram. Soc., 2003, 23: 1457
doi: 10.1016/S0955-2219(02)00356-4
|
32 |
Ren W J, Ai Z H, Jia F L, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Appl. Catal., 2007, 69B: 138
|
33 |
Zhang Y S, Kirk C, Robertson N. Nitrogen doping and carbon coating affects substrate selectivity of TiO2 photocatalytic organic pollutant degradation [J]. Chem. Phys. Chem., 2020, 21: 2643
|
34 |
Xu G, Zhang Y, Peng D D, et al. Nitrogen-doped mixed-phase TiO2 with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane [J]. Appl. Surf. Sci., 2021, 536: 147953
doi: 10.1016/j.apsusc.2020.147953
|
35 |
Wang R, Shi M S, Xu F Y, et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection [J]. Nat. Commun., 2020, 11: 4465
doi: 10.1038/s41467-020-18267-1
pmid: 32901012
|
36 |
Ökte A N, Akalın Ş. Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity [J]. React. Kinet. Mech. Catal., 2010, 100: 55
|
37 |
Cheng X W, Yu X J, Xing Z P, et al. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity [J]. Arab. J. Chem., 2016, 9(): S1706
doi: 10.1016/j.arabjc.2012.04.052
|
38 |
Niu J F, Han G C, Dai P X, et al. Preparation and photocatalytic activity of schiff base cobalt porphyrin-TiO2 composites [J]. Chin. J. Mater. Res., 2016, 30: 947
|
38 |
钮金芬, 韩广超, 戴佩璇 等. 席夫碱钴卟啉-TiO2复合光催化剂的制备及其光催化性能研究 [J]. 材料研究学报, 2016, 30: 947
doi: 10.11901/1005.3093.2016.174
|
39 |
Barkhade T, Banerjee I. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites [J]. AIP Conf. Proc., 2018, 1961: 030016
|
40 |
Zolfaghari A, Riazian M, Ashjari M. Preparation and photodeposition of Fe-S/TiO2@PEG nanoparticles for methylene blue and Evans blue [J]. Res. Chem. Intermed., 2021, 47: 1809
doi: 10.1007/s11164-021-04396-9
|
41 |
Xu J S, Zhang T, Zhang J. Photocatalytic degradation of methylene blue with spent FCC catalyst loaded with ferric oxide and titanium dioxide [J]. Sci. Rep., 2020, 10: 12730
doi: 10.1038/s41598-020-69643-2
pmid: 32728146
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|