Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 871-880    DOI: 10.11901/1005.3093.2021.383
  研究论文 本期目录 | 过刊浏览 |
热压烧结(FeNiCoCr)100-x Al x (x=05)高熵合金的微观组织及力学性能
王沛锦1,2, 艾桃桃1,2(), 廖仲尼1,2, 赵堃1, 李文虎1,2, 寇领江1,2, 赵中国1,2, 邹祥宇1,2
1.陕西理工大学材料科学与工程学院 汉中 723000
2.陕西理工大学 矿渣综合利用环保技术国家地方联合工程实验室 汉中 723000
Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering
WANG Peijin1,2, AI Taotao1,2(), LIAO Zhongni1,2, ZHAO Kun1, LI Wenhu1,2, KOU Lingjiang1,2, ZHAO Zhongguo1,2, ZOU Xiangyu1,2
1.School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
2.National & Local Joint Engineering Laboratory for Environmental Protection Technology for Comprehensive Utilization of Slag, Shaanxi University of Technology, Hanzhong 723000, China
引用本文:

王沛锦, 艾桃桃, 廖仲尼, 赵堃, 李文虎, 寇领江, 赵中国, 邹祥宇. 热压烧结(FeNiCoCr)100-x Al x (x=05)高熵合金的微观组织及力学性能[J]. 材料研究学报, 2022, 36(11): 871-880.
Peijin WANG, Taotao AI, Zhongni LIAO, Kun ZHAO, Wenhu LI, Lingjiang KOU, Zhongguo ZHAO, Xiangyu ZOU. Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering[J]. Chinese Journal of Materials Research, 2022, 36(11): 871-880.

全文: PDF(5894 KB)   HTML
摘要: 

采用低能球磨-热压烧结制备了(FeNiCoCr)100-x Al x (x=0、5)高熵合金,并对其进行时效处理,研究了合金的组织结构与力学性能。结果表明:烧结态及时效态合金的微观组织均由FCC相和少量BCC相构成,其中FCC相中均存在孪晶,且未添加Al的合金中孪晶比例相对较高;添加Al的合金中BCC相较高,且时效处理后出现了大量小角度晶界。时效态FeNiCoCr合金具有最佳的综合性能,其压缩真屈服强度达545 MPa,弯曲强度和断裂韧性分别为1342±20 MPa和32.5±2.0 MPa·m1/2,优异的力学性能归因于FCC相中退火孪晶的形成以及BCC相的析出。

关键词 金属材料高熵合金热压烧结微观组织力学性能孪晶    
Abstract

The high-entropy alloys (FeNiCoCr)100-x Al x (x=0, 5) were prepared via a two-step process i.e., low-energy ball milling and then vacuum hot-pressing sintering, while the alloys were post-aged, afterwards, their microstructure and mechanical properties were assessed. The results show that the microstructure of both the as-sintered and the aged alloys composed of fcc-phase and a small amount of bcc phase, but twins presented in the fcc phase, and the proportion of twins for the alloy without Al was relatively high. The alloy with Al had relatively high bcc phase, and many small-angle grain boundaries appeared after aging treatment. The aged FeNiCoCr alloy has the best comprehensive performance, with a compressive true yield strength of 545 MPa. Moreover, the bending strength and the fracture toughness of the aged FeNiCoCr alloy reached 1342 MPa and 32.5 MPa·m1/2. The excellent mechanical properties were attributed to the generation of annealing twins in the fcc-phase and the precipitation of the bcc-phase.

Key wordsmetallic materials    high-entropy alloys    hot-pressing sintering    microstructure    mechanical properties    twins
收稿日期: 2021-06-26     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51671116)
作者简介: 王沛锦,男,1998年生,硕士生
图1  时效前后 (FeNiCoCr)100-x Al x (x=0、5)高熵合金的XRD谱
图2  时效前后(FeNiCoCr)100-x Al x (x=0、5)高熵合金的EDS面扫描元素分布图
图3  时效前后(FeNiCoCr)100-x Al x (x=0、5)高熵合金的EBSD图(a1~d1)相位图,(a2~d2)反极图(IPF)图,(a3~d3)晶界和相界图(黑线代表大角度晶界,红线代表小角度晶界,蓝线代表相界),(a4~d4)KAM图,(a5~d5)FCC相中晶界和孪晶界图(黑线代表相界,红线代表60°<111>孪晶界)
图4  烧结态FeNiCoCr高熵合金局部EBSD图(a)取向成像图;(b)图(a)对应的KAM图;(c)孪晶界取向差图
图5  时效前后(FeNiCoCr)100-x Al x (x=0、5)高熵合金的取向差角度分布图(a1~d1)和晶粒尺寸分布图(a2~d2)
图6  时效前后(FeNiCoCr)100-x Al x (x=0、5)高熵合金弯曲试样断口形貌
图7  时效前后(FeNiCoCr)100-x Al x (x=0、5)高熵合金的压缩真应力应变曲线
图8  时效前后(FeNiCoCr)100-x Al x (x=0、5)高熵合金的弯曲强度、断裂韧性和硬度
Preparation methodPhase composition

Grain size

/μm

Compression engineering yield strength

/MPa

Vickers hardness (HV)
Hot-pressing sintering (in this study)FCC matrix+BCC phase precipitation~3534252
Arc melting [40]Single FCC phase>400137-
Arc melting+Supercooled solidification [40]FCC matrix+BCC phase precipitation5~10455-
Arc melting [41]Single FCC phase-145141
Arc melting [42]Single FCC phase∼100156156
Arc melting [43]Single FCC phase-155133
表1  热压烧结和电弧熔炼制备FeNiCoCr合金微观组织和力学性能的差异
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
3 Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
4 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
5 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
6 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
7 Lucas M S, Wilks G B, Mauger L, et al. Absence of long-range chemical ordering in equimolar FeCoCrNi [J]. Appl. Phys. Lett., 2012, 100: 251907
doi: 10.1063/1.4730327
8 Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
doi: 10.1038/ncomms6964 pmid: 25601270
9 Schön C G. On short-range order strengthening and its role in high-entropy alloys [J]. Scr. Mater., 2021, 196: 113754
doi: 10.1016/j.scriptamat.2021.113754
10 Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of Al x CoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloys Compd., 2014, 589: 143
doi: 10.1016/j.jallcom.2013.11.084
11 Sokkalingam R, Mishra S, Cheethirala S R, et al. Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy [J]. Metall. Mater. Trans., 2017, 48A: 3630
12 Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged Al x CoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
doi: 10.1016/j.intermet.2015.11.002
13 Lv Y K, Hu R Y, Yao Z H, et al. Cooling rate effect on microstructure and mechanical properties of Al x CoCrFeNi high entropy alloys [J]. Mater. Des., 2017, 132: 392
doi: 10.1016/j.matdes.2017.07.008
14 Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
doi: 10.1016/j.corsci.2018.01.030
15 Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-entropy alloy design [J]. JOM, 2012, 64: 839
doi: 10.1007/s11837-012-0365-6
16 Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0≤x≤2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, 163B: 184
17 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
doi: 10.1016/j.intermet.2012.03.005
18 Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
19 Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Mater., 2018, 144: 107
20 Yasuda H Y, Shigeno K, Nagase T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals [J]. Scr. Mater., 2015, 108: 80
doi: 10.1016/j.scriptamat.2015.06.022
21 Chu C L, Chen W P, Chen Z, et al. Microstructure and mechanical behavior of FeNiCoCr and FeNiCoCrMn high-entropy alloys fabricated by powder metallurgy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 445
doi: 10.1007/s40195-020-01150-9
22 Sokkalingam R, Tarraste M, Surreddi K B, et al. Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy [J]. J. Mater. Res., 2020, 35: 2835
doi: 10.1557/jmr.2020.272
23 Jayasree R, Mane R B, Vijay R, et al. Effect of process control agents on mechanically alloyed Al0.3CoCrFeNi [J]. Mater. Lett., 2021, 292: 129618
doi: 10.1016/j.matlet.2021.129618
24 Shi Y Z. Microstructures and corrosion-resistant properties of Al x-CoCrFeNi high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
24 石芸竹. Al x CoCrFeNi系高熵合金微观组织与耐蚀性能研究 [D]. 北京: 北京科技大学, 2018
25 Chen Y L, Hu Y H, Hsieh C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system [J]. J. Alloys Compd., 2009, 481: 768
doi: 10.1016/j.jallcom.2009.03.087
26 Colombini E, Rosa R, Trombi L, et al. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating [J]. Mater. Chem. Phys., 2018, 210: 78
doi: 10.1016/j.matchemphys.2017.06.065
27 Fang S C, Chen W P, Fu Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering [J]. Mater. Des., 2014, 54: 973
doi: 10.1016/j.matdes.2013.08.099
28 Anber E A, Lang A C, Lass E A, et al. Insight into the kinetic stabilization of Al0.3CoCrFeNi high-entropy alloys [J]. Materialia, 2020, 14: 100872
doi: 10.1016/j.mtla.2020.100872
29 Chen Q Q, Song G S, Xu Y, et al. Analysis on the twinning of FCC metals by EBSD [J]. Forg. Stamp. Technol., 2015, 40(5): 140
29 陈强强, 宋广胜, 徐 勇 等. FCC金属孪晶的EBSD分析 [J]. 锻压技术, 2015, 40(5): 140
30 Dasari S, Sarkar A, Sharma A, et al. Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation [J]. Acta Mater., 2021, 202: 448
doi: 10.1016/j.actamat.2020.10.071
31 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
32 Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A: 2738
33 Zhang J B, Li Z P, Yang L Y, et al. Atomic mechanisms of dislocation and TB interaction in FCC metallic materials [J]. J. Chin. Electr. Microsc. Soc., 2020, 39: 731
33 张家宝, 李志鹏, 杨鲁岩 等. FCC金属中位错与孪晶界交互作用的原子机制 [J]. 电子显微学报, 2020, 39: 731
34 Field D P, Bradford L T, Nowell M M, et al. The role of annealing twins during recrystallization of Cu [J]. Acta Mater., 2007, 55: 4233
doi: 10.1016/j.actamat.2007.03.021
35 Dong M H, Han P D, Zhang C L, et al. First-principles study of stacking fault energy and deformation twin energy in Al-Mg alloys [J]. Acta Metall. Sin., 2011, 47: 573
35 董明慧, 韩培德, 张彩丽 等. Al-Mg合金中层错和孪晶形变能的第一性原理研究 [J]. 金属学报, 2011, 47: 573
doi: 10.3724/SP.J.1037.2010.00715
36 Yang J, Qiao J W, Ma S G, et al. Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms [J]. J. Alloys Compd., 2019, 795: 269
doi: 10.1016/j.jallcom.2019.04.333
37 Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J]. Mater. Des., 2017, 121: 254
doi: 10.1016/j.matdes.2017.02.072
38 Jagetia A, Nartu M S K K Y, Dasari S, et al. Ordering-mediated local nano-clustering results in unusually large Hall-Petch strengthening coefficients in high entropy alloys [J]. Mater. Res. Lett., 2021, 9: 213
doi: 10.1080/21663831.2020.1871440
39 Gwalani B, Choudhuri D, Liu K M, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy [J]. Mater. Sci. Eng., 2020, 771A: 138620
40 Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method [J]. Mater. Des., 2016, 95: 183
doi: 10.1016/j.matdes.2016.01.112
41 Jiang H, Han K M, Qiao D X, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 43
doi: 10.1016/j.matchemphys.2017.05.056
42 Ma H, Shek C H. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. J. Alloys Compd., 2020, 827: 154159
doi: 10.1016/j.jallcom.2020.154159
43 Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. Sci. China Technol. Sci., 2018, 61: 117
doi: 10.1007/s11431-017-9134-6
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.