|
|
热压烧结(FeNiCoCr)100-x Al x (x=0、5)高熵合金的微观组织及力学性能 |
王沛锦1,2, 艾桃桃1,2( ), 廖仲尼1,2, 赵堃1, 李文虎1,2, 寇领江1,2, 赵中国1,2, 邹祥宇1,2 |
1.陕西理工大学材料科学与工程学院 汉中 723000 2.陕西理工大学 矿渣综合利用环保技术国家地方联合工程实验室 汉中 723000 |
|
Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering |
WANG Peijin1,2, AI Taotao1,2( ), LIAO Zhongni1,2, ZHAO Kun1, LI Wenhu1,2, KOU Lingjiang1,2, ZHAO Zhongguo1,2, ZOU Xiangyu1,2 |
1.School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China 2.National & Local Joint Engineering Laboratory for Environmental Protection Technology for Comprehensive Utilization of Slag, Shaanxi University of Technology, Hanzhong 723000, China |
引用本文:
王沛锦, 艾桃桃, 廖仲尼, 赵堃, 李文虎, 寇领江, 赵中国, 邹祥宇. 热压烧结(FeNiCoCr)100-x Al x (x=0、5)高熵合金的微观组织及力学性能[J]. 材料研究学报, 2022, 36(11): 871-880.
Peijin WANG,
Taotao AI,
Zhongni LIAO,
Kun ZHAO,
Wenhu LI,
Lingjiang KOU,
Zhongguo ZHAO,
Xiangyu ZOU.
Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering[J]. Chinese Journal of Materials Research, 2022, 36(11): 871-880.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
3 |
Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
|
4 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
5 |
Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
|
6 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
|
7 |
Lucas M S, Wilks G B, Mauger L, et al. Absence of long-range chemical ordering in equimolar FeCoCrNi [J]. Appl. Phys. Lett., 2012, 100: 251907
doi: 10.1063/1.4730327
|
8 |
Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
doi: 10.1038/ncomms6964
pmid: 25601270
|
9 |
Schön C G. On short-range order strengthening and its role in high-entropy alloys [J]. Scr. Mater., 2021, 196: 113754
doi: 10.1016/j.scriptamat.2021.113754
|
10 |
Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of Al x CoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloys Compd., 2014, 589: 143
doi: 10.1016/j.jallcom.2013.11.084
|
11 |
Sokkalingam R, Mishra S, Cheethirala S R, et al. Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy [J]. Metall. Mater. Trans., 2017, 48A: 3630
|
12 |
Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged Al x CoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
doi: 10.1016/j.intermet.2015.11.002
|
13 |
Lv Y K, Hu R Y, Yao Z H, et al. Cooling rate effect on microstructure and mechanical properties of Al x CoCrFeNi high entropy alloys [J]. Mater. Des., 2017, 132: 392
doi: 10.1016/j.matdes.2017.07.008
|
14 |
Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
doi: 10.1016/j.corsci.2018.01.030
|
15 |
Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-entropy alloy design [J]. JOM, 2012, 64: 839
doi: 10.1007/s11837-012-0365-6
|
16 |
Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0≤x≤2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, 163B: 184
|
17 |
Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
doi: 10.1016/j.intermet.2012.03.005
|
18 |
Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
|
19 |
Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Mater., 2018, 144: 107
|
20 |
Yasuda H Y, Shigeno K, Nagase T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals [J]. Scr. Mater., 2015, 108: 80
doi: 10.1016/j.scriptamat.2015.06.022
|
21 |
Chu C L, Chen W P, Chen Z, et al. Microstructure and mechanical behavior of FeNiCoCr and FeNiCoCrMn high-entropy alloys fabricated by powder metallurgy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 445
doi: 10.1007/s40195-020-01150-9
|
22 |
Sokkalingam R, Tarraste M, Surreddi K B, et al. Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy [J]. J. Mater. Res., 2020, 35: 2835
doi: 10.1557/jmr.2020.272
|
23 |
Jayasree R, Mane R B, Vijay R, et al. Effect of process control agents on mechanically alloyed Al0.3CoCrFeNi [J]. Mater. Lett., 2021, 292: 129618
doi: 10.1016/j.matlet.2021.129618
|
24 |
Shi Y Z. Microstructures and corrosion-resistant properties of Al x-CoCrFeNi high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
|
24 |
石芸竹. Al x CoCrFeNi系高熵合金微观组织与耐蚀性能研究 [D]. 北京: 北京科技大学, 2018
|
25 |
Chen Y L, Hu Y H, Hsieh C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system [J]. J. Alloys Compd., 2009, 481: 768
doi: 10.1016/j.jallcom.2009.03.087
|
26 |
Colombini E, Rosa R, Trombi L, et al. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating [J]. Mater. Chem. Phys., 2018, 210: 78
doi: 10.1016/j.matchemphys.2017.06.065
|
27 |
Fang S C, Chen W P, Fu Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering [J]. Mater. Des., 2014, 54: 973
doi: 10.1016/j.matdes.2013.08.099
|
28 |
Anber E A, Lang A C, Lass E A, et al. Insight into the kinetic stabilization of Al0.3CoCrFeNi high-entropy alloys [J]. Materialia, 2020, 14: 100872
doi: 10.1016/j.mtla.2020.100872
|
29 |
Chen Q Q, Song G S, Xu Y, et al. Analysis on the twinning of FCC metals by EBSD [J]. Forg. Stamp. Technol., 2015, 40(5): 140
|
29 |
陈强强, 宋广胜, 徐 勇 等. FCC金属孪晶的EBSD分析 [J]. 锻压技术, 2015, 40(5): 140
|
30 |
Dasari S, Sarkar A, Sharma A, et al. Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation [J]. Acta Mater., 2021, 202: 448
doi: 10.1016/j.actamat.2020.10.071
|
31 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
32 |
Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A: 2738
|
33 |
Zhang J B, Li Z P, Yang L Y, et al. Atomic mechanisms of dislocation and TB interaction in FCC metallic materials [J]. J. Chin. Electr. Microsc. Soc., 2020, 39: 731
|
33 |
张家宝, 李志鹏, 杨鲁岩 等. FCC金属中位错与孪晶界交互作用的原子机制 [J]. 电子显微学报, 2020, 39: 731
|
34 |
Field D P, Bradford L T, Nowell M M, et al. The role of annealing twins during recrystallization of Cu [J]. Acta Mater., 2007, 55: 4233
doi: 10.1016/j.actamat.2007.03.021
|
35 |
Dong M H, Han P D, Zhang C L, et al. First-principles study of stacking fault energy and deformation twin energy in Al-Mg alloys [J]. Acta Metall. Sin., 2011, 47: 573
|
35 |
董明慧, 韩培德, 张彩丽 等. Al-Mg合金中层错和孪晶形变能的第一性原理研究 [J]. 金属学报, 2011, 47: 573
doi: 10.3724/SP.J.1037.2010.00715
|
36 |
Yang J, Qiao J W, Ma S G, et al. Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms [J]. J. Alloys Compd., 2019, 795: 269
doi: 10.1016/j.jallcom.2019.04.333
|
37 |
Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J]. Mater. Des., 2017, 121: 254
doi: 10.1016/j.matdes.2017.02.072
|
38 |
Jagetia A, Nartu M S K K Y, Dasari S, et al. Ordering-mediated local nano-clustering results in unusually large Hall-Petch strengthening coefficients in high entropy alloys [J]. Mater. Res. Lett., 2021, 9: 213
doi: 10.1080/21663831.2020.1871440
|
39 |
Gwalani B, Choudhuri D, Liu K M, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy [J]. Mater. Sci. Eng., 2020, 771A: 138620
|
40 |
Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method [J]. Mater. Des., 2016, 95: 183
doi: 10.1016/j.matdes.2016.01.112
|
41 |
Jiang H, Han K M, Qiao D X, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 43
doi: 10.1016/j.matchemphys.2017.05.056
|
42 |
Ma H, Shek C H. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. J. Alloys Compd., 2020, 827: 154159
doi: 10.1016/j.jallcom.2020.154159
|
43 |
Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. Sci. China Technol. Sci., 2018, 61: 117
doi: 10.1007/s11431-017-9134-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|