Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 811-820    DOI: 10.11901/1005.3093.2021.220
  研究论文 本期目录 | 过刊浏览 |
熔速对氩气保护GH4169G合金电渣锭组织及夹杂物的影响
郝剑1,2, 刘芳1,2(), 杨树林3, 姚晓雨1,2, 孙文儒1,2()
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.中航工业沈阳黎明航空发动机(集团)有限责任公司 沈阳 110043
Effect of Melting Rate on Structure and Inclusions of GH4169G Alloy Ingot Fabricated by Argon Protected Electroslag Melting
HAO Jian1,2, LIU Fang1,2(), YANG Shulin3, YAO Xiaoyu1,2, SUN Wenru1,2()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.AECC Shenyang Liming Areo Engine Co. Ltd., Shenyang 110043, China
引用本文:

郝剑, 刘芳, 杨树林, 姚晓雨, 孙文儒. 熔速对氩气保护GH4169G合金电渣锭组织及夹杂物的影响[J]. 材料研究学报, 2022, 36(11): 811-820.
Jian HAO, Fang LIU, Shulin YANG, Xiaoyu YAO, Wenru SUN. Effect of Melting Rate on Structure and Inclusions of GH4169G Alloy Ingot Fabricated by Argon Protected Electroslag Melting[J]. Chinese Journal of Materials Research, 2022, 36(11): 811-820.

全文: PDF(15807 KB)   HTML
摘要: 

研究了熔速对氩气保护GH4169G电渣锭宏微观组织及非金属夹杂物的影响。结果表明:适当增加熔速有利于缩短铸锭的局部凝固时间,减小二次枝晶间距,从而细化枝晶组织,但对Nb、Ti等易偏析元素沿径向的宏观分布影响不大。熔速对GH4169G铸锭中的夹杂物类型影响较小,主要为氧化物、氟化物和氮化物三类。夹杂物在铸锭表面最多,向内部迅速减少并趋于稳态。铸锭内部夹杂物多以氧化物为核心,氮化物为次外层,碳化物为最外层的双层或三层结构。采用MeltFlow-ESR模拟方法,分析了熔速对重熔过程中夹杂物运动轨迹的影响,发现提高熔速有利于夹杂物向铸锭表面运动,降低铸锭表面夹杂物富集区的厚度和铸锭内部夹杂物的数量。此外,提高熔速有利于缩短夹杂物析出长大的时间,降低夹杂物尺寸。

关键词 金属材料GH4169G合金电渣重熔熔速夹杂物MeltFlow-ESR模拟    
Abstract

Electroslag remelting (ESR) has been widely applied as an important technology to produce ingots for special steels and alloys because of its remarkably advantages, such as the process can purify the prepared ingots by effectively eliminating the impurity sulfur and the large inclusions. However, as one of the most important parameters of ESR, the effect of melting rate on the purity of ingot is still controversial. For this purpose, the macro- and micro-structure and nonmetallic inclusion characteristics at different positions of GH4169G ingots produced by industrial-scale argon protected electroslag remelting (PESR) technology with 2 remelting rates were comparatively investigated by means of OM, SEM, EDS and EPMA. The results indicate that a proper high melting rate is beneficial to shorten the local solidification time of ingot, reduce the secondary dendrite arm spacing and refine dendrite structure, but has little effect on the distribution of Nb, Ti and other elements along the radial direction in macro-scale. Besides, the melting rate has little effect on the inclusion types of GH4169G ingot, which are mainly oxides, fluorides and nitrides. The inclusions in the ingot are usually double or three layers with oxide as the core, nitride as the secondary outer layer and carbide as the outermost layer. The influence of the melting rate on the movement of inclusions in the remelting process was simulated via the so called MeltFlow-ESR software. It was found that the increase of melting rate was conducive to the movement of inclusions to the ingot surface, thereby the thickness of the inclusion enriched area on the surface of the ingot and the number of inclusions in the ingot could be reduced. In addition, the increase of melting rate can shorten the time of inclusion precipitation and reduce the size of inclusions.

Key wordsmetallic materials    GH4169G alloy    electroslag remelting    melting rate    inclusion    MeltFlow-ESR
收稿日期: 2021-04-09     
ZTFLH:  TF142  
作者简介: 郝剑,男,1996年生,硕士生
图1  不同熔速电渣锭宏观组织
Melting ratePositionTiNbMgNOS
LMREdge1.035.35<0.0030.00900.0009<0.0005
Center1.035.36<0.0030.00600.0014<0.0005
LMR+1 kg/minEdge0.965.37<0.0030.00620.0009<0.0005
Center0.985.40<0.0030.00710.0013<0.0005
表1  不同熔速电渣锭边缘及中心部位的化学成分
图2  电渣锭微观组织
图3  熔速对GH4169G电渣锭二次枝晶间距的影响
图4  采用MeltFlow-ESR软件模拟电渣重熔熔速对GH4169G铸锭局部凝固时间及二次枝晶间距的影响
图5  铸锭距表面不同位置处夹杂物分布
Inclusion typeONCAlTiCaFMgNbNiCrFe
Fluoride29.28--9.5213.899.2315.615.86-10.612.693.31
Oxide13.59--1.9949.8610.05---14.315.224.99
Nitride-18.385.15-58.37---14.172.221.060.64
表2  GH4169G电渣锭表面夹杂物成分
图8  铸锭距表面不同位置处单位面积内的夹杂物数量
图 6  以MgO?Al2O3为核心的复合夹杂物形貌及元素分布
图7  以(Ti, Nb)N为核心的复合夹杂物形貌及元素分布
图9  夹杂物沿径向的数量分布情况
图10  夹杂物沿径向的平均尺寸分布情况
图 11  采用MeltFlow-ESR软件对不同熔速下夹杂物运动轨迹的模拟结果
1 Sun W R, Chen G S, Luo H J, et al. Microstructure and mechanical properties of GH4169G forging billet and disc [J]. J. Iron Steel Res., 2011, 23(): 201
1 孙文儒, 陈国胜, 罗恒军 等. 工业生产GH4169G合金棒材和盘锻件的组织性能 [J]. 钢铁研究学报, 2011, 23(): 201
2 Li N, Guo S R, Lu D Z, et al. Effect of trace phosphorus and boron on the stress rupture and creep properties of direct aging In718 alloy [J]. Acta Metall. Sin., 2003, 39: 1255
2 李 娜, 郭守仁, 卢德忠 等. 微量元素磷、硼对直接时效IN718合金持久蠕变性能的影响 [J]. 金属学报, 2003, 39: 1255
3 Zheng Q Y, Chen Z Q, Yu X F, et al. Influence of solution treatment on creep of a new superalloy GH4169G [J]. Chin. J. Mater. Res., 2013, 27: 444
3 郑渠英, 陈仲强, 于兴福 等. 固溶处理对GH4169G合金蠕变的影响 [J]. 材料研究学报, 2013, 27: 444
4 An X L, Zhang B, Chu C L, et al. Evolution of microstructures and properties of the GH4169 superalloy during short-term and high-temperature processing [J]. Mater. Sci. Eng., 2018, 744A: 255
5 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
5 杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
6 Jia D, Sun W R, Xu D S, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35: 1851
doi: 10.1016/j.jmst.2019.04.018
7 Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49: 845
doi: 10.3724/SP.J.1037.2012.00712
7 田素贵, 王 欣, 谢 君 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49: 845
doi: 10.3724/SP.J.1037.2012.00712
8 Li Z R, Ma C L, Tian S G, et al. Microstructure and creep property of isothermal forging GH4169G superalloy [J]. High Temp. Mater. Processes, 2014, 33: 447
doi: 10.1515/htmp-2013-0063
9 Van Den Avyle J A, Brooks J A, Powell A C. Reducing defects in remelting processes for high-performance alloys [J]. JOM, 1998, 50(3): 22
10 Chen Z Y, Yang S F, Qu J L, et al. Effects of different melting technologies on the purity of superalloy GH4738 [J]. Materials (Basel), 2018, 11: 1838
doi: 10.3390/ma11101838
11 Zhang Y. Study on formation mechanism and prevention methods for electros lag remelting steel ingots [D]. Beijing: University of Science and Technology Beijing, 2016
11 张 扬. 电渣重熔钢锭中黑斑的形成机理及控制措施研究 [D]. 北京: 北京科技大学, 2016
12 Jiang Z H, Geng X. Research on the surface quality of ESR large slab ingots [J]. Adv. Mater. Res., 2010, 146-147: 670
13 Ahmadi S, Arabi H, Shokuhfar A, et al. Evaluation of the electroslag remelting process in medical grade of 316LC stainless steel [J]. J. Mater. Sci. Technol., 2009, 25: 592
14 Shi X, Duan S C, Yang W S, et al. Effects of remelting current on structure, composition, microsegregation, and inclusions in Inconel 718 electroslag remelting ingots [J]. Metall. Mater. Trans., 2019, 50B: 3072
15 Liu Y, Zhang Z, Li G Q, et al. Effect of current on segregation and inclusions characteristics of dual alloy ingot processed by electroslag remelting [J]. High Temp. Mater. Processes, 2019, 38: 207
doi: 10.1515/htmp-2017-0144
16 Shi C B, Zheng D L, Guo B S, et al. Evolution of oxide-sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel [J]. Metall. Mater. Trans., 2018, 49B: 3390
17 Li Q, Wang Z X, Xie S Y. Research on the development of mathematical model of the whole process of electroslag remelting and the process simulation [J]. Acta Metall. Sin., 2017, 53: 494
doi: 10.11900/0412.1961.2016.00386
17 李 青, 王资兴, 谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究 [J]. 金属学报, 2017, 53: 494
18 Huang X C, Li B K, Liu Z Q, et al. Numerical study on the removal and distribution of non-metallic inclusions in electroslag remelting process [J]. Int. J. Heat Mass Transfer, 2019, 135: 1300
doi: 10.1016/j.ijheatmasstransfer.2019.02.080
19 Wang Q, Wang R T, He Z, et al. Numerical analysis of inclusion motion behavior in electroslag remelting process [J]. Int. J. Heat Mass Transfer, 2018, 125: 1333
doi: 10.1016/j.ijheatmasstransfer.2018.04.168
20 Hou D, Wang D Y, Jiang Z H, et al. Investigation on slag–metal-inclusion multiphase reactions during electroslag remelting of die steel [J]. Metall. Mater. Trans., 2021, 52B: 478
21 Wang Z X, Wang L, Sun W R. Effect of melting rate on microstructure of IN718 alloy vacuum arc remelting ingot [J]. Trans. Mater. Heat Treat., 2019, 40(1): 91
21 王资兴, 王 磊, 孙文儒. 熔速对IN718合金真空自耗铸锭组织的影响 [J]. 材料热处理学报, 2019, 40(1): 91
22 Wang M, Zha X, Gao M, et al. Structure, microsegregation, and precipitates of an alloy 690 ESR Ingot in industrial scale [J]. Metall. Mater. Trans., 2015, 46A: 5217
23 Hernandez-Morales B, Mitchell A. Review of mathematical models of fluid flow, heat transfer, and mass transfer in electroslag remelting process [J]. Ironmak. Steelmak., 1999, 26: 423
doi: 10.1179/030192399677275
24 Li Z B, Zhou W H, Li Y D. Mechanism of removal of non-metallic inclusions in the ESR process [J]. Iron Steel, 1980, 15(1): 23
24 李正邦, 周文辉, 李谊大. 电渣重熔去除夹杂的机理 [J]. 钢铁, 1980, 15(1): 23
25 Fu J. An investigation of mechanism on the removal of oxide inclusions during ESR process [J]. Acta Metall. Sin., 1979, 15: 526
25 傅 杰. 电渣重熔过程中氧化物夹杂去除机理的探讨 [J]. 金属学报, 1979, 15: 526
26 Mitchell A. Oxide inclusion behaviour during consumable electrode remelting [J]. Ironmak. Steelmak., 1974, 1: 172
27 Li Z B. Electroslag Metallurgy Theory and Practice [M]. Beijing: Metallurgical Industry Press, 2010: 25
27 李正邦. 电渣冶金的理论与实践 [M]. 北京: 冶金工业出版社, 2010: 25
28 Chen K, Du D H, Lu H, et al. Effect of TiN inclusion on fatigue crack growth behavior of alloy 690 tube [J]. Rare Met. Mat. Eng., 2018, 47: 1180
28 陈 凯, 杜东海, 陆 辉 等. TiN夹杂物对690合金传热管疲劳裂纹扩展行为的影响 [J]. 稀有金属材料与工程, 2018, 47: 1180
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.