Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 801-810    DOI: 10.11901/1005.3093.2021.315
  研究论文 本期目录 | 过刊浏览 |
沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响
崔丽1, 孙丽丽1, 郭鹏1, 马鑫1,3, 王舒远1,2, 汪爱英1,2()
1.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
2.中国科学院大学 材料与光电研究中心 北京 100049
3.西安交通大学 机械制造系统工程国家重点实验室 西安 710049
Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK
CUI Li1, SUN Lili1, GUO Peng1, MA Xin1,3, WANG Shuyuan1,2, WANG Aiying1,2()
1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3.State Key Laboratory for Manufacturing System Engineering, Xi′an Jiaotong University, Xi′an 710049, China
引用本文:

崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
Li CUI, Lili SUN, Peng GUO, Xin MA, Shuyuan WANG, Aiying WANG. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. Chinese Journal of Materials Research, 2022, 36(11): 801-810.

全文: PDF(7163 KB)   HTML
摘要: 

采用直流磁控溅射技术在聚醚醚酮(PEEK)表面制备不同厚度的类金刚石(DLC)薄膜,研究了沉积时间对其表/界面结构、组分、疏水、力学和光透过性能的影响。结果表明,在平均沉积速率为5.71 nm/min的条件下,随着沉积时间的延长DLC薄膜的厚度线性增大、碳原子的致密性提高、界面互锁结构增强,而界面结合强度逐渐降低。沉积时间≤15 min时,基体结构的影响使拟合计算出的ID/IG值为0.23~0.25和sp2/sp3比值较小(0.58~0.74);沉积时间>15 min时基体的影响较小,ID/IG值突增大至0.81,sp2/sp3值也比较大(0.96~1.12)。沉积时间的延长使PEEK基体的温度逐渐升高,使膜内的sp2/sp3值逐渐增大。薄膜表面的氧含量先降低然后趋于平缓,部分C=O转化为C-O。随着沉积时间的延长,PEEK/DLC复合薄膜的硬度、弹性模量及防紫外线和阻隔红外线性能都逐渐提高,其表面粗糙度和疏水性的变化趋势是先提高后降低。沉积时间为32 min的薄膜,其表面粗糙度和水接触角达到最大值,分别为495 nm和108.29°。

关键词 材料表面与界面聚醚醚酮类金刚石薄膜表面改性沉积时间界面结合    
Abstract

Diamond-like carbon (DLC) films with different thickness (11.26~230.93 nm) were prepared on polyether ether ketone (PEEK) via direct current magnetron sputtering in the time ranging from 2 to 40 min. The effect of deposition time on the structure and composition of surface and interface, as well as the surface hydrophobic, the mechanical and optical transmittance properties of composite films PEEK/DLC were systematically studied. Results show that with the increase of deposition time the film thickness will be enhanced linearly with an average deposition rate of 5.71 nm/min. The density of C atoms and the interface interlocking structure gradually increase, while the interface adhesion decreases with time. By fitting peaks of Raman and XPS spectra, it is found that when the time ≤15 min, the ID/IGvalue by data fitting remains at 0.23~0.25 and the ratio of sp2/sp3 is low (0.58~0.74) due to the influence of substrate. When the time >15 min, as the substrate effect becomes weak the ID/IG value has a great increase (to 0.81), and the sp2/sp3 value turns to be high (0.96~1.12). Prolonging the time will lead to the rise of substrate temperature inducing the ascending of sp2/sp3 ratio. While O content at the surface presents a low-flat trend and part of C=O bonds transformed into C-O bonds. The hardness, elastic modulus, the anti-ultraviolet and infrared barrier properties of PEEK/DLC composite films will rise over time, while the surface roughness and hydrophobicity both have a trend from high to low, reaching a maximum surface roughness and water contact angle of 495 nm and 108.29° at 32 min, respectively.

Key wordssurface and interface in the materials    polyether ether ketone    diamond-like carbon films    surface modification    deposition time    interface adhesion
收稿日期: 2021-05-19     
ZTFLH:  O484  
基金资助:王宽诚率先人才计划卢嘉锡国际团队项目(GJTD-2019-13);浙江省自然科学基金(LQ20E020004);宁波市科技创新2025重大专项(2020Z023);宁波市科技创新2025重大专项(2018B10012)
作者简介: 崔 丽,女,1989年生,硕士
图1  DLC薄膜沉积系统的示意图
图2  不同沉积时间PEEK/DLC复合薄膜表面的SEM照片
图3  不同沉积时间PEEK/DLC复合薄膜横截面的HRTEM照片
图4  PEEK表面DLC薄膜的厚度和平均沉积速率与沉积时间的关系
图5  不同沉积时间PEEK/DLC复合薄膜的粘结力
图6  不同沉积时间PEEK/DLC复合薄膜的Raman谱、ID/IG值、腔体温度以及PEEK的分子结构式
图7  不同沉积时间PEEK/DLC复合薄膜表面的O 1s谱图、C 1s谱图、C元素、O元素、C-O键和C=O键的相对浓度以及C/O比、sp2和sp3含量和sp2/sp3值
图8  PEEK/DLC复合薄膜表面的粗糙度(Ra)和水接触角与沉积时间的关系
图9  不同沉积时间PEEK/DLC表面的三维高度图
图10  PEEK/DLC复合薄膜硬度和弹性模量与沉积时间的关系
图11  不同沉积时间PEEK/DLC复合薄膜的光透过率曲线
1 Zheng Y Y, Xiong C D, Wang Z C, et al. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response [J]. Appl. Surf. Sci., 2015, 344: 79
doi: 10.1016/j.apsusc.2015.03.113
2 Tsuka H, Morita K, Kato K, et al. Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone (PEEK) [J]. J. Prosthodont. Res., 2019, 63: 52
doi: S1883-1958(18)30213-5 pmid: 30220621
3 Li X W, Zhang D, Lee K R, et al. Effect of metal doping on structural characteristics of amorphous carbon system: a first-principles study [J]. Thin Solid Films, 2016, 607: 67
doi: 10.1016/j.tsf.2016.04.004
4 Wang A Y, Lee K R, Ahn J P, et al. Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique [J]. Carbon, 2006, 44: 1826
doi: 10.1016/j.carbon.2005.12.045
5 Takikawa H, Miyakawa N, Minamisawa S, et al. Fabrication of diamond-like carbon film on rubber by T-shape filtered-arc-deposition under the influence of various ambient gases [J]. Thin Solid Films, 2004, 457: 143
doi: 10.1016/j.tsf.2003.12.029
6 Ma X, Zhang Q, Guo P, et al. Residual compressive stress enabled 2D-to-3D junction transformation in amorphous carbon films for stretchable strain sensors [J]. ACS Appl. Mater. Interfaces, 2020, 12: 45549
doi: 10.1021/acsami.0c12073
7 Smietana M, Bock W J, Szmidt J. Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method [J]. Thin Solid Films, 2011, 519: 6339
doi: 10.1016/j.tsf.2011.04.032
8 Shirakura A, Nakaya M, Koga Y, et al. Diamond-like carbon films for PET bottles and medical applications [J]. Thin Solid Films, 2006, 494: 84
doi: 10.1016/j.tsf.2005.08.366
9 Martinez-Martinez D, De Hosson J T M. On the deposition and properties of DLC protective coatings on elastomers: a critical review [J]. Surf. Coat. Technol., 2014, 258: 677
doi: 10.1016/j.surfcoat.2014.08.016
10 Qiang L, Bai C N, Gong Z B, et al. Microstructure, adhesion and tribological behaviors of Si interlayer/Si doping diamond-like carbon film developed on nitrile butadiene rubber [J]. Diamond Relat. Mater., 2019, 92: 208
doi: 10.1016/j.diamond.2019.01.005
11 Xu W, Lin S S, Dai M J, et al. Effects of bias voltage on the microstructure and properties of Al-doped hydrogenated amorphous carbon films synthesized by a hybrid deposition technique [J]. Vacuum, 2018, 154: 159
doi: 10.1016/j.vacuum.2018.05.008
12 Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J]. Phys. Rev., 2001, 64B: 075414
13 Park S J, Ko T J, Yoon J, et al. Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates [J]. Appl. Surf. Sci., 2018, 427: 1
14 Martinez-Martinez D, Schenkel M, Pei Y T, et al. Microstructural and frictional control of diamond-like carbon films deposited on acrylic rubber by plasma assisted chemical vapor deposition [J]. Thin Solid Films, 2011, 519: 2213
doi: 10.1016/j.tsf.2010.11.006
15 Hatada R, Flege S, Ensinger W, et al. Deposition of diamond-like carbon films on insulating substrates by plasma source ion implantation [J]. Surf. Coat. Technol., 2020, 385: 125426
doi: 10.1016/j.surfcoat.2020.125426
16 Zhang X Q, Huang M D, Ke P L, et al. Impact of bias on the graphite-like carbon films grown by high power impulse magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2013, 33: 969
16 张学谦, 黄美东, 柯培玲 等. 基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究 [J]. 真空科学与技术学报, 2013, 33: 969
17 Schenkel M, Martinez-Martinez D, Pei Y T, et al. Tribological performance of DLC films deposited on ACM rubber by PACVD [J]. Surf. Coat. Technol., 2011, 205: 4838
doi: 10.1016/j.surfcoat.2011.04.072
18 Konkhunthot N, Photongkam P, Wongpanya P. Improvement of thermal stability, adhesion strength and corrosion performance of diamond-like carbon films with titanium doping [J]. Appl. Surf. Sci., 2019, 469: 471
doi: 10.1016/j.apsusc.2018.11.028
19 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B: 14095
20 Zhang S, Zeng X T, Xie H, et al. A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films [J]. Surf. Coat. Technol., 2000, 123: 256
doi: 10.1016/S0257-8972(99)00523-X
21 Zeng Y L, Jiang L, Cai X Y, et al. Identification of the characteristic vibrations for 16 PAHs based on Raman spectrum [J]. Spectrosc. Spect. Anal., 2014, 34: 2999
21 曾娅玲, 姜 龙, 蔡啸宇 等. 拉曼光谱的16种多环芳烃(PAHs)特征振动光谱辨识 [J]. 光谱学与光谱分析, 2014, 34: 2999
22 Kim S, Lee K J, Seo Y. Polyetheretherketone (PEEK) surface functionalization by low-energy ion-beam irradiation under a reactive O2 environment and its effect on the PEEK/Copper adhesives [J]. Langmuir, 2004, 20: 157
doi: 10.1021/la035396h
23 Roy M, Kubacki J, Psiuk B, et al. Photofunctionalization effect and biological ageing of PEEK, TiO2 and ZrO2 abutments material [J]. Mater. Sci. Eng., 2021, 121C: 111823
24 Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng., 2002, 37R: 129
25 Liu F X, Yao K L, Liu Z L. Substrate tilting effect on structure of tetrahedral amorphous carbon films by Raman spectroscopy [J]. Surf. Coat. Technol., 2007, 201: 7235
doi: 10.1016/j.surfcoat.2007.01.030
26 Soin N, Roy S S, Ray S C, et al. Thickness dependent electronic structure of ultra-thin tetrahedral amorphous carbon (ta-C) films [J]. Thin Solid Films, 2012, 520: 2909
doi: 10.1016/j.tsf.2011.12.039
27 Sattel S, Robertson J, Ehrhardt H. Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon [J]. J. Appl. Phys., 1997, 82: 4566
doi: 10.1063/1.366193
28 Huang J X, Wan S H, Liu B, et al. Improved adaptability of PEEK by Nb doped graphite-like carbon composite coatings for bio-tribological applications [J]. Surf. Coat. Technol., 2014, 247: 20
doi: 10.1016/j.surfcoat.2014.03.016
29 Du J Y, Zhang G F, Li G Q, et al. Diamond-like-carbon film prepared on stainless steel substrates by liquid phase electrochemical deposition [J]. Electrochemistry, 2007, 13: 58
29 杜景永, 张贵锋, 李国卿 等. 不锈钢上液相电沉积类金刚石薄膜 [J]. 电化学, 2007, 13: 58
30 Ko T J, Her E K, Shin B, et al. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures [J]. Carbon, 2012, 50: 5085
doi: 10.1016/j.carbon.2012.06.048
31 Shin B, Lee K R, Moon M W, et al. Extreme water repellency of nanostructured low-surface-energy non-woven fabrics [J]. Soft Matter, 2012, 8: 1817
doi: 10.1039/C1SM06867A
32 Ko T J, Her E K, Shin B, et al. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures [J]. Carbon, 2012, 50: 5085
doi: 10.1016/j.carbon.2012.06.048
33 Asl A M, Kameli P, Ranjbar M, et al. Correlations between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films [J]. Superlattices Microst., 2015, 81: 64
doi: 10.1016/j.spmi.2014.11.041
34 Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
35 Cha T G, Yi J W, Moon M W, et al. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness [J]. Langmuir, 2010, 26: 8319
doi: 10.1021/la9047402
36 Yang S, Zhang Y W, Zeng K Y. Analysis of nanoindentation creep for polymeric materials [J]. J. Appl. Phys., 2004, 95: 3655
doi: 10.1063/1.1651341
37 Liu C K, Lee S, Sung L P, et al. Load-displacement relations for nanoindentation of viscoelastic materials [J]. J. Appl. Phys., 2006, 100: 033503
38 Briscoe B J, Fiori L, Pelillo E. Nano-indentation of polymeric surfaces [J]. J. Phys., 1998, 31D: 2395
39 Xu Z Y, Zheng Y J, Jiang F, et al. The microstructure and mechanical properties of multilayer diamond-like carbon films with different modulation ratios [J]. Appl. Surf. Sci., 2013, 264: 207
doi: 10.1016/j.apsusc.2012.10.003
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.