Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 821-828    DOI: 10.11901/1005.3093.2021.281
  研究论文 本期目录 | 过刊浏览 |
锂离子电池负极材料TiS3 纳米片的制备和性能
肖揽, 于文华, 黄昊(), 吴爱民, 靳晓哲
大连理工大学材料科学与工程学院 辽宁省能源材料及器件重点实验室 大连 116024
Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries
XIAO Lan, YU Wenhua, HUANG Hao(), WU Aimin, JIN Xiaozhe
Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

肖揽, 于文华, 黄昊, 吴爱民, 靳晓哲. 锂离子电池负极材料TiS3 纳米片的制备和性能[J]. 材料研究学报, 2022, 36(11): 821-828.
Lan XIAO, Wenhua YU, Hao HUANG, Aimin WU, Xiaozhe JIN. Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries[J]. Chinese Journal of Materials Research, 2022, 36(11): 821-828.

全文: PDF(7534 KB)   HTML
摘要: 

先用直流(DC)电弧法制备TiH1.924纳米粉作为前驱体,再用固-气相反应制备了片状结构的TiS3纳米粉体。使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、拉曼光谱分析和性能测试等手段对其表征,研究了TiS3纳米片的结构和将其用作负极的锂离子电池的性能。结果表明:TiS3纳米片具有特殊的片状结构,其厚度约为35 nm。将TiS3纳米片用作负极的锂离子电池具有良好的电化学性能,在500 mA/g电流密度下循环300圈后其容量仍保持在430 mAh/g。以5 A/g的大电流密度放电其比容量为240 mAh/g,电流密度恢复到100 mA/g其放电比容量稳定在500 mAh/g。TiS3良好的倍率性能,源于其特殊的纳米片状结构。这种单层片状结构,能较好地适应电极材料在大电流密度多次放电/充电过程中产生的应变引起的体积变化,使其免于粉碎。

关键词 无机非金属材料三硫化钛直流电弧法锂离子电池负极纳米材料    
Abstract

TiH1.924 nanometer powder was prepared by DC arc method, and then taking TiH1.924 as precursor,TiS3 nanometer flakes with laminar structure was prepared by solid-gas reaction. The structure and performance of TiS3 nanoflakes as anode material for lithium-ion batteries were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy and performance testing. The performance of TiS3 nanoflakes as anode for lithium-ion battery was also investigated. The results show that the TiS3 nanoflake has a special nano-laminar structure, and its thickness is about 35 nm. The lithium-ion battery using TiS3 nanoflakes as anode material has good electrochemical performance with the remained capacity of 430 mAh/g after 300 cycles at a current density of 500 mA/g. When the current density is 5 A/g the discharge capacity is 240 mAh/g and when the current density is restored to 100 mA/g, the discharge capacity is stable at 500 mAh/g. The good magnification properties of TiS3 are due to its special nano-flake structure. The mono-laminar structure can better adapt to the volume change caused by the strain in the process of multiple discharge/charging at high current density, so as to prevent the electrode from crushing.

Key wordsinorganic non-metallic materials    TiS3    DC arc discharge    lithium-ion battery    cathode    nano materials
收稿日期: 2021-04-30     
ZTFLH:  O646  
基金资助:中央高校基本科研业务费重点实验室专项经费(DUT20LAB123);江苏省自然科学基金(BK20191167)
作者简介: 肖 揽,男,1998年生,硕士生
图1  TiS3的晶体结构示意图
图2  TiH1.924和TiS3的XRD谱
图3  TiS3纳米片的Raman谱
图4  TiH1.924和TiS3的SEM和TEM照片
图5  TiS3纳米片的TEM、AFM照片以及厚度示意图
图6  TiS3纳米粉体的充放电曲线和倍率性能曲线
图7  TiS3电极片循环前和循环500圈后的SEM照片
图8  TiS3纳米粉体的充放电曲线和CV曲线
图9  TiS3电极片在充放电过程中的非原位XRD谱
图10  TiS3电极循环不同次数后的电化学阻抗谱
图11  TiS3电极材料循环前和循环后电化学阻抗谱的等效电路模拟
SampleCPE1CPE2R2R3σW/Ω·cm2·s-0.5D0/cm2·s-1IF/mA·cm-2
Initial3.561×10-5-62.63-28.9866.366×10-112.665×10-4
1st cycle5.355×10-41.371×10-411.9828.1640.9873.184×10-111.393×10-3
5th cycle2.766×10-41.056×10-723.640.80931.2755.468×10-117.061×10-4
10th cycle1.217×10-41.969×10-619.051.59524.7128.759×10-118.763×10-4
20th cycle1.476×10-41.413×10-620.841.600

41.579

3.094×10-118.010×10-4
50th cycle1.333×10-46.508×10-727.511.57248.8902.237×10-116.149×10-4
表1  TiS3纳米片电极的模拟电路参数
1 Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithium batteries [J]. Mater. Res. Bull., 2008
2 Whittingham M S. Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 35(50): 4271
3 Luo F, Chu G, Huang J, et al. Fundamental scientific aspects of lithium batteries (Ⅷ)——Anode electrode materials [J]. Energy Storage Science and Technology, 2014, 02(2): 146
3 罗 飞, 褚 赓, 黄 杰 等. 锂离子电池基础科学问题(Ⅷ)——负极材料 [J]. 储能科学与技术, 2014, 02(2): 146
4 Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage [J]. Nat. Chem., 2015, 7(1): 19
doi: 10.1038/nchem.2085 pmid: 25515886
5 Dunn B, Kamath H, Tarascon J M. Electrical Energy Storage for the Grid: A Battery of Choices [J]. Science, 2011, 334(6058): 928
doi: 10.1126/science.1212741 pmid: 22096188
6 Yayathi S, Walker W, Doughty D, et al. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications [J]. J. Power Sources, 2016, 329(oct.15) : 197
7 Aurbach D, Markovsky B, Weissman I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim. Acta, 1999, 45(1-2): 67
doi: 10.1016/S0013-4686(99)00194-2
8 Martin, Winter, Jürgen, et al. Insertion Electrode Materials for Rechargeable Lithium Batteries [J]. Adv. Mater., 1998, 10(10): 725
doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
9 Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nat. Chem., 2013, 5(4): 263
doi: 10.1038/nchem.1589 pmid: 23511414
10 Luo Q, Huang H. Preparation and electrochemical properties of TiS2 nanoparticle porous anode materials [J]. J Funct. Mater., 2020, 51(06): 06022
10 罗 倩, 黄 昊. TiS2纳米片多孔负极材料的制备及其电化学性能 [J]. 功能材料, 2020, 51(06): 06022
11 Zeng Z, Tan C, Xiao H, et al. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction [J]. Energy Environ. Sci., 2014, 7(2): 797
doi: 10.1039/C3EE42620C
12 Pan S, Yin Z, Cheng Q, et al. Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium-sulfur battery [J]. J Alloys Compd., 2020, 832: 154947
doi: 10.1016/j.jallcom.2020.154947
13 Zong J, Wang F, Zhao J, et al. Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage [J]. J Alloys Compd., 2020, 832: 154947
doi: 10.1016/j.jallcom.2020.154947
14 Luo, B, Fang, et al. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage [J]. Energy Environ. Sci., 2012, 5: 5226
doi: 10.1039/C1EE02800F
15 Xia J, Yuan Y, Yan H, et al. Electrospun SnSe/C nanofibers as binder-free anode for lithium-ion and sodium-ion batteries [J]. J. Power Sources, 2019, 449: 227559
doi: 10.1016/j.jpowsour.2019.227559
16 Peng L, Zhu Y, Chen D, et al. Two-Dimensional Materials for Beyond-Lithium-Ion Batteries [J]. Adv Energy Mater., 2016, 6,1600025
doi: 10.1002/aenm.201600025
17 Tanibata N, Matsuyama T, Hayashi A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity [J]. J. Power Sources, 2015, 275: 284
doi: 10.1016/j.jpowsour.2014.10.193
18 Hawkins C G, Whittaker-Brooks L. Controlling Sulfur Vacancies in TiS2-x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications [J]. Acs Appl. Nano Mater., 2018, 1(2): 851
doi: 10.1021/acsanm.7b00266
19 Wang L J. Study on photoelectric characteristics of narrow-band and wide-band oxide radial heterostructures [D]. Harbin: Harbin Engineering University, 2009
19 王丽娇. 窄带宽带氧化物径向异质纳米结构光电特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2009
20 Wu J, Wang D, Liu H, et al. An ab initio study of TiS3: a promising electrode material for rechargeable Li and Na ion batteries [J]. Rsc Adv., 2015, 5(28): 21455
doi: 10.1039/C4RA15055D
21 Ji L, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy Environ. Sci., 2011, 4(8): 2682
doi: 10.1039/c0ee00699h
22 Aric A S, Bruce P, Scrosati B, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices [J]. Nat. Mater., 2005, 4(5): 366
pmid: 15867920
23 Cao M, Wang X, Zhang M, et al. Electromagnetic Response and Energy Conversion for Functions and Devices in Low‐Dimensional Materials [J]. Adv. Funct. Mater, 2019, 29(25): 1
24 Han C, Cao W Q, Cao M S. Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries [J]. Inorg. Chem. Front., 2020, 7: 4101
doi: 10.1039/D0QI00892C
25 Cao W, Wang W, Shi H, et al. Hierarchical three-dimensional flower-like Co3O4 archi- tectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano, 2018, 011(003): 1437
26 Island, J O, Barawi M, Biele R, et al. TiS3 Transistors with Tailored Morphology and Electrical Properties [J]. Adv. Mater., 2015, 27(16): 2595
doi: 10.1002/adma.201405632
27 Tanibata N, Matsuyama T, Hayashi A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity [J]. J Power Sources, 2015, 275: 284
doi: 10.1016/j.jpowsour.2014.10.193
28 Tao Y R, Xiong W W, Wu X C. Titanium Tri- and di-Sulfide Nanobelts/Graphene Composites for Rechargeable Lithium Battery Cathodes and Enhancement of Reversible Capacities [J]. Sci. Adv. Mater., 2014, 6(9): 1965
doi: 10.1166/sam.2014.1964
29 Sun G, Wei Z, Chen N, et al. Quasi-1D TiS3: A potential anode for high-performance sodium-ion storage [J]. Chem. Eng. J., 2020, 388: 1
30 Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behaviors of MoP banoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Research, 2019, 3(1): 65
30 肖雅丹, 靳晓哲, 黄 昊 等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33(1): 65
doi: 10.11901/1005.3093.2017.793
31 Wu K, Torun E, Sahin H, et al. Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 [J]. Nat. Commun., 2016, 7: 12952.
doi: 10.1038/ncomms12952 pmid: 27653671
32 Grayfer ED, Pazhetnov E M, Kozlova M N, et al. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries [J]. Chem Sus Chem, 2017, 10(24): 4805
doi: 10.1002/cssc.201701709
33 Yin Y X, Xin S, Guo Y G, et al. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects [J]. Angew. Chem., 2013, 52(50): 13186
doi: 10.1002/anie.201304762
34 Meddings N, Heinrich M, Overney F, et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review [J]. J. Power Sources, 2020, 480: 228742
doi: 10.1016/j.jpowsour.2020.228742
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.