Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 49-54    DOI: 10.11901/1005.3093.2021.230
  研究论文 本期目录 | 过刊浏览 |
Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能
李瑞一, 谢敏(), 张永和, 裴训, 刘洋, 宋希文
内蒙古科技大学材料与冶金学院 包头 014010
Physical Properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 Ceramic Materials
LI Ruiy, XIE Min(), ZHANG Yonghe, PEI Xun, LIU Yang, SONG Xiwen
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
引用本文:

李瑞一, 谢敏, 张永和, 裴训, 刘洋, 宋希文. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能[J]. 材料研究学报, 2022, 36(1): 49-54.
Ruiy LI, Min XIE, Yonghe ZHANG, Xun PEI, Yang LIU, Xiwen SONG. Physical Properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 Ceramic Materials[J]. Chinese Journal of Materials Research, 2022, 36(1): 49-54.

全文: PDF(961 KB)   HTML
摘要: 

用固相反应法制备(Gd1-xErx)2(Zr0.8Ti0.2)2O7(摩尔分数x=0,0.2,0.4)陶瓷并测试其晶体结构、显微形貌和物理性能,研究了Er2O3掺杂的影响。结果表明,(Gd1-xErx)2(Zr0.8Ti0.2)2O7陶瓷具有立方烧绿石结构,显微结构致密,在室温至1200℃高温相的稳定性良好;Er3+掺杂降低了陶瓷材料的热导率和平均热膨胀系数,当x=0.2时,其1000℃的热导率最低(为1.26 W·m-1·k-1)。同时,Er3+掺杂还提高了这种材料的硬度和断裂韧性。

关键词 无机非金属材料热障涂层材料烧绿石结构热物理性能增韧    
Abstract

Er2O3 doped ceramic materials (Gd1-xErx)2(Zr0.8Ti0.2)2O7 (x=0, 0.2,0.4, x is mole fraction) were prepared by solid-state reaction method, the crystallographic structure, microstructure, thermophysical properties and mechanical properties of the materials were examined in terms of the effect of Er2O3 doping. The results show that (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramic material presents the same crystallographic structure as cubic pyroclase with good high temperature phase stability from room temperature to 1200℃. Er3+ doping can reduce the thermal conductivity and the average thermal expansion coefficient of the ceramic materials, peculiarly, the thermal conductivity of (Gd0.8Er0.2)2(Zr0.8Ti0.2)2O7 ceramic material is the lowest at 1000℃, which is 1.26 W·m-1·k-1. In addition, the doping of Er3+ can improve the hardness and fracture toughness of the material.

Key wordsinorganic non-metallic materials    thermal barrier coating materials    pyrochlore    thermal properties    enhanced toughness
收稿日期: 2021-04-15     
ZTFLH:  TG174.45  
基金资助:国家自然科学基金(51762036);内蒙古自治区应用技术研究与开发资源资金项目
作者简介: 李瑞一,男,1996年生,工学硕士
图1  (Gd1-xErx)2(Zr0.8Ti0.2)2O7的 XRD谱
xa/nmrA/nmrB/nmrA/rBRelative density/%
01.047320.10500.06971.506594.9
0.21.044260.10400.06971.493397.9
0.41.040700.10320.06971.480196.9
表1  (Gd1-xErx)2(Zr0.8Ti0.2)2O7陶瓷材料晶胞参数、离子半径及相对密度
图2  (Gd0.8Er0.2)2(Zr0.8Ti0.2)2O7陶瓷表面的SEM照片
图3  (Gd1-xErx)2(Zr0.8Ti0.2)2O7的线变化率
图4  (Gd1-xErx)2(Zr0.8Ti0.2)2O7的热扩散系数
图5  (Gd1-xErx)2(Zr0.8Ti0.2)2O7的热导率
图6  (Gd1-xErx)2(Zr0.8Ti0.2)2O7的硬度和断裂韧性
1 Goward G W. Progress in coatings for gas turbine airfoils [J]. Surface & Coatings Technology, 1998, 108: 73
2 Guo H B, Gong S K, Xu H B. Progressin thermal barrier coatings for advanced aeroengine [J]. Materials China, 2009, 29(9/10): 18
2 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 29(9/10): 18
3 Wu Q, Zhang X, Peng H R, et al. Thermophysical properties of pyrochlore structure A2B2O7 thermal barrier coating materials: A review [J]. Thermal Spray Technology, 2014, 6(1): 1
3 吴 琼, 张 鑫, 彭浩然等. 烧绿石结构A2B2O7热障涂层材料热物理性能综述 [J]. 热喷涂技术, 2014, 6(1): 1
4 Yuan X H, Guo H B, Peng H, et al. High temperature thermo-physical properties of and preparation of a novel thermal barrier coating Gd2Zr2O7-8YSZ [J]. Acta Materiae Compositae Sinica, 2013, 30(05): 138
4 袁小虎, 郭洪波, 彭 徽等. Gd2Zr2O7陶瓷的高温热物理性能及Gd2Zr2O7-8YSZ双涂层制备 [J]. 复合材料学报, 2013, 30(05): 138
5 Zhang S P, Hua Y Q, Shuai W W, et al. Thermophysical properties of Gd2(CexZr1-x)2O7 ceramic materials [J]. Journal of Ceramics, 2019, 40(03): 301
5 张少朋, 花银群, 帅文文等. Gd2(CexZr1-x)2O7陶瓷材料的热物理性能研究 [J]. 陶瓷学报, 2019, 40(03): 301
6 Jiang B C. The effect of TiSi2 doping on structures and properties of Gd2Zr2O7 ceramic for thermal barrier coatings [D]. Jiangsu University, 2019
6 姜伯晨. TiSi2的掺杂对Gd2Zr2O7热障涂层陶瓷层材料结构与性能的影响 [D]. 江苏大学, 2019
7 Kutty K V G, Rajagopalan S, Mathews C K, et al. Thermal expansion behaviour of some rare earth oxide pyrochlores [J]. Mater Res Bull, 1994, 29(7): 759
8 Xizhong Wang, Lei Guo, Hailin Zhang, et al. Structural evolution and thermal conductivities of (Gd1-xYbx)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings [J]. Ceramics International, 2015, 41(10): 12621
9 Wan C. L., Pan W., Xu Q., et al. Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model [J]. Physical Review B, 2006, 74(14): 1
10 Chunlei Wan, Zhixue Qu, Aibing Du, et al. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7 [J]. Acta Materialia, 2009, 57(16): 4782
11 Zhang Y. H., Xie M., Zhou F., et al. Low thermal conductivity in La2Zr2O7 pyrochlore with A-site partially substituted with equimolar Yb2O3 and Er2O3 [J]. Ceramics International, 2014, 40(7) part A: 9151
12 Zhang X P, Chen X G, Zhang H S. Research progress of ceramic materials for thermal barrier coatings [J]. Journal of Synthetic Crystals, 2016, 45(7): 1000
12 张仙平, 陈晓鸽, 张红松. 热障涂层用陶瓷材料研究进展 [J]. 人工晶体报, 2016, 45(7): 1000
13 Zebarjadi M, Esfarjani K, Yang J, et al. Effect of filler mass and binding on thermal conductivity of fully filled skutterudites [J]. Physical Review B, 2010, 82(19): 19527
14 Mandal B. P., Tyagi A. K.. Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2-xNdxZr2O7 [J]. Journal of Alloys and Compounds, 2007, 437(1-2): 260
15 Zhou Y. Material Analysis Method [M]. Beijing: China Machine Press, 2004
15 周 玉. 材料分析方法 [M]. 北京: 机械工业出版社, 2004
16 Subramanian M. A., Aravamudan G., Subba R. G. V.. Oxide pyrochlores-A review [J]. Progress in Solid State Chemistry, 1983, 15(2): 55
17 Hanako N., Yamamura H., Aarai T., et al. Effect of cation radius ratio and unit cell free volume on oxide-ion conductivity in oxide systerms with pyrochore-type composition [J]. Journal of the Ceramic Society of Japan, 2004, 112(10): 541
18 Yamamura H, Nishino H, Kakinuma K, Nomura K. Electrical conductivity anomaly around fluorite-pyrochlore phase boundry [J]. Solid State Ionics, 2003, 158(3-4): 359
19 Guan Z D, Zhang Z T, Jiao J S. Physical Properties of Inorganic Materials [M]. Beijing: Tsinghua University Press, 2008
19 关振铎, 张中太, 焦金生. 无机材料物理性能 [M]. 北京: 清华大学出版社, 2008
20 Zhang Yu, Guo Lei, Zhao Xiaoxiang. Effects of non-stoichiometry on the mechanical properties of Nd2 -xZr2+xO7 +x/2 ceramics [J]. Mterials Letters, 2014, 136: 157
21 Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics [M]. New York:John Wiley & Sons, 1976: 589
22 Xie M, Song X W, Zhou F, et al. Effect of Er3+ doping on the structure and thermophysical properties of Nd2Zr2O7 phase [J]. Rare earth, 2016, 37(04): 51
22 谢 敏, 宋希文, 周 芬. Er3+掺杂对Nd2Zr2O7相结构及热物理性能的影响 [J]. 稀土, 2016, 37(04): 51
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.