Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 55-61    DOI: 10.11901/1005.3093.2021.270
  研究论文 本期目录 | 过刊浏览 |
Al/Ti摩尔比对(CrTiAl)N硬质膜相结构和硬度的影响
张钧1,2(), 彭立静1,2, 王宇1,2, 王晓阳1,2, 王楠1,2, 王美涵1,2
1.沈阳大学机械工程学院 沈阳 110044
2.辽宁省多组硬质膜研究及应用重点实验室 沈阳 110044
Effect of Al/Ti Molar Ratio on Phase Structure and Hardness of (CrTiAl)N Films
ZHANG Jun1,2(), PENG Lijing1,2, WANG Yu1,2, WANG Xiaoyang1,2, WANG Nan1,2, WANG Meihan1,2
1.College of Mechanical Engineering, Shenyang University, Shenyang 110044, China
2.Key Laboratory of Research and Application of Multiple Hard Films of Liaoning Province, Shenyang 110044, China
引用本文:

张钧, 彭立静, 王宇, 王晓阳, 王楠, 王美涵. Al/Ti摩尔比对(CrTiAl)N硬质膜相结构和硬度的影响[J]. 材料研究学报, 2022, 36(1): 55-61.
Jun ZHANG, Lijing PENG, Yu WANG, Xiaoyang WANG, Nan WANG, Meihan WANG. Effect of Al/Ti Molar Ratio on Phase Structure and Hardness of (CrTiAl)N Films[J]. Chinese Journal of Materials Research, 2022, 36(1): 55-61.

全文: PDF(10236 KB)   HTML
摘要: 

采用多弧离子镀技术,设计沉积工艺和调整阴极弧源靶组合以及对应的弧源电流,制备出以CrN为基形貌和厚度相同、Al/Ti摩尔比不同的系列(CrTiAl)N硬质膜。测试膜的成分、组织形貌、相组成和表面硬度,研究了 Al/Ti摩尔比对其相结构和硬度的影响。结果表明:不同Al/Ti摩尔比的(CrTiAl)N膜其相组成相同,都呈现(200)和(111)晶面择优生长。随着膜层的Al/Ti摩尔比从0.38提高到0.85,其硬度表现出规律性的变化。Al/Ti摩尔比为0.49的(CrTiAl)N膜硬度最高(达到HV4200),Al/Ti摩尔比为0.85时硬度降到HV2600。在膜层组织形貌、膜层厚度以及CrN含量基本不变的条件下,Al/Ti摩尔比直接影响膜层的硬度并呈现出非单调关系。在较大的Al/Ti摩尔比范围内(CrTiAl)N膜层的相结构不变,均为置换式面心立方固溶体。优化Al/Ti摩尔比,可使(CrTiAl)N膜的硬度显著高于(CrTi)N膜而具有超硬性。

关键词 金属材料(CrTiAl)N硬质膜多弧离子镀Al/Ti摩尔比硬度相结构    
Abstract

A series of (CrTiAl)N hard films with the same morphology and thickness but different Al/Ti molar ratio were prepared via multi-arc ion plating technology with desired processing parameters while varying the combination mode of cathode arc source and target. The chemical composition, microstructure, phase constituent and surface hardness of the films were characterized. Meanwhile the effect of Al/Ti molar ratio on the phase structure and hardness of the films were investigated. The results show that:the (CrTiAl)N films with different Al/Ti molar ratios present the same phase constituents with preferred growth orientations (200) and (111). With the increase of Al/Ti molar ratio from 0.38 to 0.85, the hardness of the film shows a regular change. The hardness of (CrTiAl)N films with Al/Ti molar ratio of 0.49 is the highest, reaching HV4200, however when the Al/Ti molar ratio is 0.85, the hardness decreases to HV2600. The Al/Ti molar ratio has a direct effect on the hardness of the film and shows a non-monotonic relationship when the microstructure, thickness and CrN content of the films are basically unchanged. In the larger Al/Ti molar ratio range, the phase structure of (CrTiAl)N films is unchanged and all of them are displacement-centered cubic solid solutions. The hardness of (CrTiAl)N films is significantly higher than that of (CrTiN) films and which can possess super hardness by optimizing the molar ratio of Al/Ti.

Key wordsmetallic materials    (CrTiAl)N hard film    multi-arc ion plating    Al/Ti molar ratio    hardness    phase structure
收稿日期: 2021-04-29     
ZTFLH:  TG430.40  
基金资助:辽宁省高等学校创新人才支持计划(LR2019044)
作者简介: 张钧,男,1966年生,博士
Film samplesCathodic arc current/A
TiCrCrAl
1#6048
2#5550
3#5055
4#4860
0#55\55~
表1  (CrTiAl)N和(TiCr)N硬质膜的沉积工艺参数
图1  沉积时间和氮气、氩气流量的控制
图2  (CrTiAl)N膜和(TiCr)N膜的表面和断面形貌
图3  (CrTiAl)N膜的Al/Ti摩尔比以及对应的(归一化后)金属元素含量
图4  (CrTiAl)N膜的XRD衍射谱和CrN、TiN的标准衍射谱
图5  (CrTiAl)N膜的实测晶格常数与根据VEGARD定律计算结果的对比
图6  Al/Ti摩尔比对(CrTiAl)N膜硬度的影响
1 Hörling A, Hultman L, Odén M, et al. Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools [J]. Surf. Coat. Technol., 2004, 191(2): 384
2 Chen S Y, Luo D F, Zhao G B. Investigation of the Properties of TixCr1-xN Coatings Prepared by Cathodic Arc Deposition [J]. Phys. Procedia., 2013, 50: 163
3 Sabitzer C, Paulitsch J, Kolozsvári S, et al. Mayrhofer. Influence of bias potential and layer arrangement on structure and mechanical properties of arc evaporated Al-Cr-N coatings[J]. Vac.,2014,106: 49
4 Falub C V, Karimi A, Ante M, et al. Interdependence between stress and texture in arc evaporated Ti-Al-N thin films [J]. Surf. Coat. Technol., 2007, 201(12): 5891
5 Niu E W, Li L, Lv G H, et al. Characterization of Ti-Zr-N films deposited by cathodic vacuum arc with different substrate bias [J]. Appl. Surf. Sci., 2008, 254(13): 3909
6 Lamni R, Sanjinés R, Parlinska-Wojtan M, et al. Microstructure and nanohardness properties of Zr-Al-N and Zr-Cr-N thin films [J]. J. Vac. Sci. Technol. A, 2005, 23(4): 593
7 Kimura A, Hasegawa H, Yamada K, et al. Metastable Ti1-xAlxN films with different Al content [J]. J. Mater. Sci. Lett.,2000,19(7): 601
8 Boxman R L, Zhitomirsky V N, Grimberg I, et al. Structure and hardness of vacuum arc deposited multi-component nitride coatings of Ti, Zr and Nb [J]. Surf. Coat. Technol., 2000, 125(1-3): 257
9 Hasegawa H, Kawate M, Suzuki T. Effects of Al contents on microstructures of Cr1-xAlxN and Zr1-xAlxN films synthesized by cathodic arc method [J]. Surf. Coat. Technol., 2005, 200(7): 2409
10 Donohue L A, Cawley J, Brooks J S, et al. Deposition and characterization of TiAlZrN films produced by a combined steered arc and unbalanced magnetron sputtering technique [J]. Surf. Coat. Technol., 1995, 74: 123
11 Zhang J, Guo W Y, Zhang Y, et al. Mechanical properties and phase structure of (TiAlZr)N films deposited by multi arc ion plating [J]. Thin Solid Films, 2009, 517(17): 4830
12 Yamamoto K, Sato T, Takahara K, et al. Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode [J]. Surf. Coat. Technol., 2003, 174: 620
13 Santana A E, Karimi A, Derflinger V H, et al. Microstructure and mechanical behavior of TiAlCrN multilayer thin films [J]. Surf. Coat. Technol., 2003, 177: 334
14 Harris S G, Doyle E D, Wong Y C, et al. Reducing the macroparticle content of cathodic arc evaporated TiN coatings [J]. Surf. Coat. Technol., 2003, 183(2): 283
15 Zhang J, Lv H M, Cui G Y, et al. Effects of bias voltage on the microstructure and mechanical properties of (Ti,Al,Cr)N hard films with N-gradient distributions [J]. Thin Solid Films, 2011, 519(15): 4818
16 Wan X S, Zhao S S, Yang Y, et al. Effects of nitrogen pressure and pulse bias voltage on the properties of Cr-N coatings deposited by arc ion plating [J]. Surf. Coat. Technol., 2009, 204(11): 1800
17 Cai F, Chen M H, Li M X, et al. Influence of negative bias voltage on microstructure and property of Al-Ti-N films deposited by multi-arc ion plating [J]. Ceramics International, 2017, 43(4): 3774
18 Liu W, Li A Q, Wu H D, et al. Effects of bias voltage on microstructure, mechanical properties, and wear mechanism of novel quaternary (Ti, Al, Zr)N coating on the surface of silicon nitride ceramic cutting tool [J]. Ceramics International, 2016, 42(15): 17693
19 Tay B K, Shi X, Yang H S, et al. The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique [J]. Surf. Coat. Technol., 1999, 111(2): 229
20 Larijani M M, Tabrizi N, Sh Norouzian, et al. Structural and mechanical properties of ZrN films prepared by ion beam sputtering with varying N2/Ar ratio and substrate temperature [J]. Vac., 2006, 81(4): 550
21 Tang J F, Lin C Y, Yang F Ch, et al. Influence of Nitrogen Content and Bias Voltage on Residual Stress and the Tribological and Mechanical Properties of CrAlN Films [J]. Coatings, 2020, 10(6): 546
22 Donohue L A, Cawley J, Brooks J S. Deposition and characterisation of arc-bond sputter TixZryN coatings from pure metallic and segmented targets [J]. Surf. Coat. Technol., 1995, 72(1): 128
23 Bourhis E Le, Goudeau P, Staia M H, et al. Mechanical properties of hard AlCrN-based coated substrates [J]. Surf. Coat. Technol., 2009, 203(19): 2961
24 Kim G S, Lee S Y. Microstructure and mechanical properties of AlCrN films deposited by CFUBMS [J]. Surf. Coat. Technol., 2006, 201(7): 4361
25 Lee K H, Park C H, Yoon Y S, et al. Structure and properties of TiCrN coatings produced by the ion-plating method [J]. Thin Solid Films, 2001, 385(1-2): 167
26 Weber F -R, Fontaine F, Scheib M, et al. Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings—correlation between lifetime of coated cutting tools, structural and mechanical film properties [J]. Surf. Coat. Technol., 2003, 177: 227
27 Chang Y Y, Wang D Y, Hung C Y. Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process [J]. Surf. Coat. Technol., 2005, 200(5-6): 1702
28 Elstner F, Gautier C, Moussaoui H, et al. A comparative study of structure and residual stress in chromium nitride films deposited by vacuum arc evaporation, ion plating, and DC magnetron sputtering [J]. Phys. Stat. Sol., 2010, 158(2): 505
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.