Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (1): 25-35    DOI: 10.11901/1005.3093.2020.080
  研究论文 本期目录 | 过刊浏览 |
热处理对Al-Mg-Ga-In-Sn合金微观结构和铝水反应的影响
杜邦登1, 刘军2, 王晓婉1, 汪伟1(), 陈德敏1()
1.中国科学院金属研究所 沈阳 110016
2.中石化江汉油田石油工程技术研究院 武汉 430035
Effect of Heat Treatment on Microstructure and Al-water Reactivity of Al-Mg-Ga-In-Sn Alloys
DU Bangdeng1, LIU Jun2, WANG Xiaowan1, WANG Wei1(), CHEN Demin1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Institute of Petroleum Engineering Research, Sinopec Jianghan Oilfield, Wuhan 430035, China
引用本文:

杜邦登, 刘军, 王晓婉, 汪伟, 陈德敏. 热处理对Al-Mg-Ga-In-Sn合金微观结构和铝水反应的影响[J]. 材料研究学报, 2021, 35(1): 25-35.
Bangdeng DU, Jun LIU, Xiaowan WANG, Wei WANG, Demin CHEN. Effect of Heat Treatment on Microstructure and Al-water Reactivity of Al-Mg-Ga-In-Sn Alloys[J]. Chinese Journal of Materials Research, 2021, 35(1): 25-35.

全文: PDF(19993 KB)   HTML
摘要: 

制备不同镁含量的Al-Mg-Ga-In-Sn合金并对其进行固溶和时效热处理,用XRD和SEM分析和观察了显微结构和腐蚀表面,用AFM/SKPFM测量了合金不同晶界相与铝晶粒间的电势差,用排水法测量了在不同水温下合金的铝水反应。结果表明,热处理改变了合金低熔点界面相的种类、形态以及合金晶粒内Mg和Ga含量。热处理态Mg含量低于4%的合金,其中有Mg2Sn、MgGa、MgGa2、MgIn界面相;在Mg含量为5%的热处理态合金中出现了Mg5Ga2、Mg2Ga相。在时效态合金晶粒内有MgGa相析出。与相同成分的铸态合金相比,时效态合金中各晶界相与铝基体间的电位差较大。热处理态合金的产氢速率和产氢率,与合金的Mg含量有关。分析了热处理使合金显微结构和晶界相与铝基体间电位差变化的原因,并讨论了热处理对合金铝水反应的影响。

关键词 金属材料铝合金热处理微观结构铝水反应电位差    
Abstract

Al-Mg-Ga-In-Sn alloys with different Mg-contents were prepared and then subjected to solution and aging treatment. The microstructure and corrosion morphology after immersion in water of alloys was characterized by means of XRD and SEM with EDX. The Volta potential differences (ΔVPD) of interfacial phases with respect to Al matrix were measured using AFM/SKPFM. The Al-water reactivity of alloys in waters at different temperature were measured by using drainage method. The heat treatment influences the phase type, morphology of interfacial phases, and the content of Mg and Ga inside Al grains. As the Mg content is below 4% the heat-treated alloys contain interfacial phases of Mg2Sn, MgGa, MgGa2 andMgIn. Mg5Ga2 and Mg2Ga phases occurs as the Mg content of alloy is c.a. 5%. MgGa phase precipitates within Al grains of the aged alloys. The heat-treated alloys exhibit higher the Volta potential differences (ΔVPD) of interfacial phases with respect to Al in comparison with the cast ones. The generation rate and yield amount of hydrogen correlate with Mg contents of the heat-treated alloys. The reasons that the heat treatment affects the microstructures of alloys and the Volta potential differences (ΔVPD) of interfacial phases with respect to Al were analyzed, and the effect of heat treatment on the Al-water reactivity of alloys was also discussed.

Key wordsmetallic materials    aluminum alloy    magnesium    heat treatment    microstructures    Al-water reactivity    Volta potential differences
收稿日期: 2020-03-16     
ZTFLH:  TG14  
基金资助:国家科技重大专项(2016ZX05060004);中国科学院创新基金(CXJJ-17-M158)
作者简介: 杜邦登,男,1989年生,博士
图1  不同Mg含量Al-Mg-Ga-In-Sn固溶态和时效态合金的XRD谱
图2  不同Mg含量固溶态和时效态Al-Mg-Ga-In-Sn合金的断口形貌

Sample

/mass fraction

SpectrumPhaseElement/atom fraction, %
MgAlGaInSn
2 %, solutionG11.8996.531.58--
GB266.342.201.11-30.34
GB314.3069.9414.361.40-
GB429.9235.415.2929.39-
GB534.0926.5619.0020.34-
3%, solutionG63.0995.521.39--
GB762.407.19--30.41
GB841.6918.068.0132.24-
GB935.0635.0228.401.51-
GB1038.3927.3322.8011.48-
4%, solutionG114.2294.711.07--
GB1266.291.051.08-31.58
GB1319.5954.4120.455.55-
GB1433.5327.0220.0819.37-
5%, solutionG155.1093.950.95--
GB1649.8627.85--22.29
GB1758.577.5920.3313.52-
GB1838.7021.7719.7419.78-
GB1927.9949.5722.44--
GB2036.8623.756.7332.66-
3%, agingG213.1195.501.39--
GB2244.3332.340.95-22.39
GB2325.9449.4218.725.93-
GB2425.2247.412.8624.52-
GB2536.2421.2928.2714.20-
4%, agingG264.2294.621.16--
GB2741.5230.780.98-26.72
GB2835.0635.0228.401.51-
GB2927.5744.6710.8316.93-
GB3035.3226.5420.5717.58-
表1  热处理态Al?Mg?Ga?In?Sn合金铝晶粒和晶界相的成分
图3  不同Mg含量时效态Al-Mg-Ga-In-Sn合金中铝晶粒断口形貌和铝晶粒析出相能谱
图4  Al-Mg-Ga-In-Sn合金中铝晶粒的成分与Mg含量的关系
图5  不同Mg含量Al-Mg-Ga-In-Sn合金的产氢曲线
图6  产氢速率和产氢率与Mg含量的关系
图7  Mg含量为3%的时效合金中Mg2Sn相以及MgGa和MgGa+MgIn相的表面形貌、表面电势和电势分布
图8  Mg含量为5%的时效态合金中Mg2Sn和MgIn相以及MgGa和Mg5Ga2相的表面形貌、表面电势和电势分布
SampleΔVPD/mV
MgIn+MgGaMg2SnMgInMg5Ga2MgGa
3%, as-cast--180±15-128±18--70±15
5%, as-cast--196±15-74±20-
3%, aging-426±78-260±15---164±15
5%, aging--229±4-118±14-105±19-91±10
表2  Mg含量3%和5%的铸态[14]和时效态合金中晶界相与铝基体间的ΔVPD
图9  Al-Mg-Ga-In-Sn合金与70℃水接触不同时间后的腐蚀形貌

Sample

/mass fraction

SpectrumElement/atom fraction, %
OMgAlGaInSn

As-prepared,

2% aged alloy

122.9847.186.46--23.29
29.1332.6522.2435.98--
349.871.6026.88-21.65-

2% aged alloy,

immersed for 60 s

456.7619.179.51--14.57
567.421.6614.231.2718.12-
643.375.6037.9711.521.54-

2% aged alloy,

immersed for

10 min

753.7922.168.58--15.48
868.535.0614.882.289.25-
960.0913.7810.191.351.2513.35

5% aged alloy,

immersed for

60 s

1069.8415.365.89--8.91
1147.5923.747.0813.837.75-
1265.282.6519.7210.312.04-
1368.014.8915.89-11.21-
表3  时效态Al-Mg-Ga-In-Sn合金在70℃水中浸泡不同时间后各相的成分
1 Hossain M M, Rahman M K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing [J]. J. Petrol. Sci. Eng., 2008, 60: 86
2 Montgomery C T, Smith M B. Hydraulic fracturing: History of an enduring technology [J]. J. Petrol. Technol., 2010, 62: 26
3 Themig D. New technologies enhance efficiency of horizontal, multistage fracturing [J]. J. Pet. Technol., 2011, 63: 26
4 Ostojic J, Rezaee R, Bahrami H. Production performance of hydraulic fractures in tight gas sands, a numerical simulation approach [J]. J. Petrol. Sci. Eng., 2012, 88-89: 75
5 Rutqvist J, Rinaldi A P, Cappa F, et al. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs [J]. J. Petrol. Sci. Eng., 2013, 107: 31
6 Fukui R, Greenfield C, Pogue K, et al. Experience curve for natural gas production by hydraulic fracturing [J]. Energ. Policy, 2017, 105: 263
7 Lai F P, Li Z P, Wang Y N. Impact of water blocking in fractures on the performance of hydraulically fractured horizontal wells in tight gas reservoir [J]. J. Petrol. Sci. Eng., 2017, 156: 134
8 Wilson A. Controlled-electrolytic-metallics completion devices combine strength with dissolution [J]. J. Petrol. Technol., 2013, 65: 145
9 Geng Z W, Xiao D H, Chen L. Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys [J]. J. Alloys Compd., 2016, 686: 145
10 Zheng C, Liu Y H, Wang X H, et al. Dissolvable fracturing tool based on a controlled electrolytic method [J]. J. Petrol. Sci. Eng., 2017, 153: 81
11 Yang J, Wang J S, Yin J L, et al. Microstructure and properties of soluble alloy used for fracturing separation tools [J]. Mater. Mech. Eng., 2017, 41(9): 32
12 Park M H, Terada D, Marya M, et al. Microstructures and mechanical properties of an artificially-aged Al-Mg-Ga alloy [J]. Mater. Sci. Forum, 2014, 794-796: 1032
13 Yang B B, Zhu J F, Jiang T, et al. Effect of heat treatment on Al-Mg-Ga-In-Sn alloy for hydrogen generation through hydrolysis reaction [J]. Int. J. Hydrog. Energy., 2017, 42: 24393
14 Du B D, He T T, Liu G L, et al. Al-water reactivity of Al-Mg-Ga-In-Sn alloys used for hydraulic fracturing tools [J]. Int. J. Hydrog. Energy, 2018, 43: 7201
15 Flamini D O, Saidman S B. Electrochemical behaviour of Al-Zn-Ga and Al-In-Ga alloys in chloride media [J]. Mater. Chem. Phys, 2012, 136: 103
16 Moghanni-Bavil-Olyaei H, Arjomandi J, Hosseini M. Effects of gallium and lead on the electrochemical behavior of Al-Mg-Sn-Ga-Pb as anode of high rate discharge battery [J]. J. Alloys Compd., 2017, 695: 2637
17 Baldwin K R, Bates R I, Arnell R D, et al. Aluminium-magnesium alloys as corrosion resistant coatings for steel [J]. Corros. Sci., 1996, 38: 155
18 Vuelvas S, Valdez-Rodriguez S, Gonzalez-Rodriguez J G. Effect of Mg and Sn addition on the corrosion behavior of an Al-Mn alloy in 0.5 M H2SO4 [J]. Int. J. Electrochem. Sci., 2012, 7: 4171
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.