Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (1): 36-44    DOI: 10.11901/1005.3093.2020.149
  研究论文 本期目录 | 过刊浏览 |
B掺杂MnO2的制备及其电化学性能
夏傲(), 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强
陕西科技大学材料科学与工程学院 无机材料绿色制备与功能化重点实验室 西安 710021
Preparation and Electrochemical Properties of B-doped MnO2
XIA Ao(), ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang
Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
引用本文:

夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
Ao XIA, Chenpeng ZHAO, Xiaoxiong ZENG, Yuepeng HAN, Guoqiang TAN. Preparation and Electrochemical Properties of B-doped MnO2[J]. Chinese Journal of Materials Research, 2021, 35(1): 36-44.

全文: PDF(2816 KB)   HTML
摘要: 

用一步水热法制备B3+掺杂Birnessite-MnO2负极材料,使用XRD,Raman,SEM,TEM,XPS和恒电流充放电等手段表征了材料的结构和电化学性能。结果表明,B3+掺杂前后的MnO2都是由二维纳米片组装而成的花球,B3+离子掺杂使纳米片的厚度减小,从而缩短了锂离子和电子在材料内部的传输路径;掺杂适量的B3+离子,使Birnessite-MnO2的电荷转移电阻显著降低。B3+掺杂比例为9%的电极材料,具有最优的电化学性能。在电流密度为100 mA·g-1和1000 mA·g-1的条件下,首次充电比容量分别为855.1 mAh·g-1和599 mAh·g-1,循环100次后仍然保有805 mAh·g-1和510.3 mAh·g-1的可逆比容量,容量保持率分别为94.1%和85.2%。

关键词 材料合成与加工工艺锂离子电池水热法MnO2电化学性能    
Abstract

B3+ doped birnessite-MnO2 anode materials were successfully prepared by one-step hydrothermal method, and then characterized by XRD, Raman, SEM, TEM, XPS and electrochemical performance tests. The pure- and doped-MnO2 particles were globular nano-flowers composed of two-dimensional nano flakes . The thickness of nano flakes decreased after B3+ doping, thus the transmission path of Li-ions and electrons in the bulk material was shortened. The charge transfer resistance of birnessite-MnO2 decreased obviously after a proper amount of B3+ ions doping. The B-MnO2 doped with 9% B3+ showed the optimal electrochemical performance. In conditions of the current density of 100 mA·g-1 and 1000 mA·g-1, the initial charging specific capacities were 855.1 mAh·g-1 and 599 mAh·g-1, respectively. After 100 cycles the corresponding reversible capacities still remained 805 mAh·g-1 and 510.3 mAh·g-1, and the respective retention rates were 94.1% and 85.2% respectively.

Key wordssynthesizing and processing technics for materials    lithium-ion battery    hydrothermal method    MnO2    electrochemical performance
收稿日期: 2020-05-03     
ZTFLH:  TM912.9  
基金资助:中国博士后科学基金(2016M592746);陕西科技大学博士创业资助计划(BJ15-04)
作者简介: 夏傲,女,1981生,副教授
图1  B掺杂MnO2样品的XRD图谱
Samplea=b/nmc/nmd(003)/nm

Cell volume

/nm

Angle/(°)
B0M0.285072.162210.7121115.21790×90×120
B3M0.286992.129880.7075315.192
B9M0.284222.152750.7098015.060
B15M0.284002.130790.7067514.884
表1  XRD图谱中得到的所有样品的晶格参数
图2  B掺杂MnO2样品的拉曼谱图
图3  B0M、B3M、 B9M以及B15M样品的SEM照片
图4  B9M的TEM图片
图5  B0M和B9M的XPS全谱、B9M的B1s窄谱、B0M的Mn2p窄谱、B9M的Mn2p窄谱、B0M的O1s窄谱以及B9M的O1s窄谱
SamplesElement content (XPS)Surface chemical state
Mn/OK/MnMn3+/Mn4+O1/O2
B0M0.21240.02810.942.89
B9M0.20890.02281.072.74
表2  通过XPS拟合所得的元素状态分析
图6  纯相MnO2和B掺杂MnO2的晶体结构示意图
图7  样品的循环伏安曲线和首次充放电曲线
图8  电流密度为100 mA·g-1和1000 mA·g-1时样品的循环性能、样品的倍率性能以及电流密度为100 mA·g-1时样品三次循环后的阻抗谱图
SampleRs/Ω·cm2E/%CPE1/FE/%Rct/Ω·cm2E/%CPE2(S-sec^n)E/%
B0M4.693.241.29×10-57.82510.793.790.01442.776
B3M9.592.7065.04×10-69.16611.783.8460.00851.997
B9M7.332.699.97×10-610.098.394.420.013052.184
B15M4.693.926.258×10-66.4219.523.290.077367.41
表3  合成样品的EIS模型参数
1 Li L, Jacobs R, Gao P, et al. Origins of large voltage hysteresis in high energy-density metal fluoride lithium-Ion battery conversion electrodes [J]. J. Am. Chem. Soc., 2016, 138 (8): 2838
2 Peng L, Zhu Y, Peng X, et al. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage [J]. Nano. Lett., 2017, 17 (10): 6273
3 Zhao K, Liu F, Niu C, et al. Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes [J]. Adv. Sci., 2015, 2 (12): 1500154
4 Zhu C, Usiskin R E, Yu Y, et al. The nanoscale circuitry of battery electrodes [J]. Science., 2017, 358 (6369): 1400
5 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature., 2001, 414(6861): 359
6 Zhang S S, Xu K, Jow T R. Low temperature performance of graphite electrode in Li-ion cells [J]. Electrochim. Acta, 2002, 48 (3): 241
7 Aravindan V, Lee Y S, Madhavi S. Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes [J]. Adv. Energy. Mater., 2015, 5(13): 1
8 Sawai K, Ohauku T. Factors affecting rate capability of graphite electrodes for lithium-ion batteries [J]. J. Electrochem. Soc., 2003, 150(6): A674
9 Julien C, Massot M, Bassour-Hodjean R, et al. Raman spectra of birnessite manganese dioxides [J]. Solid State Ionics., 2003, 159(3-4): 345
10 Hu Z M, Xiao X, Chen C, et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability [J]. Nano Energy., 2015, 11: 226
11 Xu S, Lu L, Liu L, et al. Hydrothermal synthesis of Cu-doped β-MnO2 nanorods as cathode material for lithium ion battery applications [J]. J. Nanosci. Nanotech., 2017, 17(3): 2109
12 Jian Z, Wang S P, Yu J X, et al. Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries [J]. J. Solid State Electr., 2014, 18(6): 1585
13 Wang X, Yin M, Xue H, et al. Simple microwave synthesis and improved electrochemical performance of Nb-doped MnO2/reduced graphene oxide composite as anode material for lithium-ion batteries [J]. Ionics., 2017, 24(9): 2583
14 Zhao K N, Sun C L, et al. Surface gradient Ti-Doped MnO2 nanowires for high-rate and long-life lithium battery [J]. ACS. Appl. Mater. Inter., 2018, 10(51): 44376
15 Chi H Z, Zhu H, Gao L. Boron-doped MnO2/carbon fiber composite electrode for supercapacitor [J]. J. Alloys. Compd., 2015, 645: 199
16 Andrade Neto N F, Zanatta P, Nascimento L E, et al. Characterization and photoluminescent, photocatalytic and antimicrobial properties of Boron-doped TiO2 nanoparticles obtained by microwave-assisted solvothermic method [J]. J. Electron. Mater., 2019, 48(5): 3145
17 Biggin P C, Smith G R, Shrivastava I, et al. Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations [J]. BBA--Biomembranes., 2001, 1510(1-2): 1
18 Gao T, Glerup M, Krumeich F, et al. Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers [J]. J. Phys. Chem. C., 2008, 112(34): 13134
19 Wei Y J, Yan L Y, Wang C Z, et al. Effects of Ni doping on [MnO6] octahedron in LiMn2O4 [J]. J. Phys. Chem. B, 2004, 108(48): 18547
20 Santos V P, Soares O S G P, Bakker J J W, et al. Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties [J]. J. Catal., 2012, 293: 165
21 Gao T, Fjellv G H, Norby P. A comparison study on Raman scattering properties of α- and β-MnO2 [J]. Anal Chim Acta., 2009, 648(2): 235
22 Liu Y, Zhang P Y. Removing Surface hydroxyl groups of Ce-modifified MnO2 to signifificantly improve its stability for gaseous ozone decomposition [J]. J. Phys. Chem. C., 2017, 121(42): 23488
23 Mavel G, Escard J, Costa P, et al. ESCA surface study of metal borides [J]. Surf. Sci., 1973, 35: 109
24 Jia J J, Callcott T A, Shirley E L, et al. Resonant Inelastic X-Ray scattering in hexagonal boron nitride observed by soft-x-ray fluorescence spectroscopy [J]. Phys. Rev. Lett., 1996, 76(21): 4054
25 Hao S J, Zhang B W, Feng J Y, et al. Nanoscale ion intermixing induced activation of Fe2O3/MnO2 composites for application in lithium ion batteries [J]. J. Mater. Chem. A, 2017, 5(18): 8510
26 Yu Q, Wang C, Li X Y, et al. Engineering an effffective MnO2 catalyst from LaMnO3 for catalytic methane Combustion [J]. Fuel., 2019, 239: 1240
27 Yan L, Shen C, Niu L, et al. Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2 [J]. ChemSusChem., 2019, 12(15): 3571
28 Zhao L, Wang W, Zhao H, et al. Controlling oxygen vacancies through gas-assisted hydrothermal method and improving the capacitive properties of MnO2 nanowires [J]. Appl. Surf. Sci., 2019, 491(15): 24
29 Han X, Gui X, Yi T F, et al. Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries [J]. Curr. Opin. Solid St. M., 2018, 22(4): 109
[1] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[2] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[4] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[5] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[6] 赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
[7] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[8] 肖揽, 于文华, 黄昊, 吴爱民, 靳晓哲. 锂离子电池负极材料TiS3 纳米片的制备和性能[J]. 材料研究学报, 2022, 36(11): 821-828.
[9] 李万喜, 杜意恩, 郭芳, 陈勇强. CoFe2O4-Co3Fe7纳米粒子及CoFe2O4/多孔碳的制备及其电磁性能研究[J]. 材料研究学报, 2021, 35(4): 302-312.
[10] 唐长斌, 牛浩, 黄平, 王飞, 张玉洁, 薛娟琴. NF/PDMA/MnO2-Co电容电极对低浓度Pb2+的电吸附特性[J]. 材料研究学报, 2021, 35(2): 115-127.
[11] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[12] 刘芝君, 李之锋, 王春香, 谢光明, 黄庆研, 钟盛文. 四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能[J]. 材料研究学报, 2020, 34(8): 584-590.
[13] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[14] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[15] 李玲芳, 曾斌, 原志朋, 范长岭. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究[J]. 材料研究学报, 2020, 34(8): 591-598.