|
|
CMT成型TC4-DT合金的组织及其形成机理的CET模型预测 |
杜子杰1,2, 李文渊2( ), 刘建荣2, 锁红波3, 王清江2 |
1.中国科学技术大学 合肥 230026 2.中国科学院金属研究所 沈阳 110016 3.青岛卓思三维智造技术有限公司 青岛 266109 |
|
Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode |
DU Zijie1,2, LI Wenyuan2( ), LIU Jianrong2, SUO Hongbo3, WANG Qingjiang2 |
1.University of Science and Technology of China, Hefei 230026,China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China 3.Qingdao JointX Intelligent Manufacturing Limited, Qingdao 266109,China |
引用本文:
杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT成型TC4-DT合金的组织及其形成机理的CET模型预测[J]. 材料研究学报, 2020, 34(7): 518-526.
Zijie DU,
Wenyuan LI,
Jianrong LIU,
Hongbo SUO,
Qingjiang WANG.
Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode[J]. Chinese Journal of Materials Research, 2020, 34(7): 518-526.
[1] |
Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
|
[1] |
(张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1)
|
[2] |
Wang J Y. Titanium Alloy for Aviation [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1985: 1
|
[2] |
(王金友. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1985: 1)
|
[3] |
Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys [J]. Titanium Ind. Prog., 2004, 21(5): 19
|
[3] |
(李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景 [J]. 钛工业进展, 2004, 21(5): 19)
|
[4] |
Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
|
[4] |
(刘卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38)
|
[5] |
Guo P, Zhao Y Q, Hong Q. Effect of microstructure on fatigue crack propagation rate of TC4-DT titanium alloy [J]. Trans. Mater. Heat Treat., 2018, 39(4): 31
|
[5] |
(郭萍, 赵永庆, 洪权. 显微组织对TC4-DT钛合金疲劳裂纹扩展速率的影响 [J]. 材料热处理学报, 2018, 39(4): 31)
|
[6] |
Guo P, Zhao Y Q, Zeng W D, et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys [J]. Mater. Sci. Eng., 2013, 563A: 106
|
[7] |
Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
doi: 10.1016/j.matdes.2011.09.004
|
[8] |
Feng B X, Mao X N, Yang G J. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2009, 512A: 105
|
[9] |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
[10] |
Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
|
[10] |
(巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66)
|
[11] |
Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromachin. Mould, 2012, (Suppl.1): 20
|
[11] |
(李涤尘, 田小永, 王永信等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (增刊): 20)
|
[12] |
Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2014, 46: 675
|
[12] |
(赵剑峰, 马智勇, 谢德巧等. 金属增材制造技术 [J]. 南京航空航天大学学报, 2014, 46: 675)
|
[13] |
Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
[14] |
Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
|
[15] |
Lu S L, Qian M, Tang H P, et al. Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting [J]. Acta Mater., 2016, 104: 303
|
[16] |
Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
|
[17] |
Suo H B. Microstructure and mechanical properties of TC4 produced by electron beam rapid manufacturing [D]. Wuhan: Huazhong University of Science & Technology, 2014
|
[17] |
(锁红波. 电子束快速成形TC4钛合金显微组织及力学性能研究 [D]. 武汉: 华中科技大学, 2014)
|
[18] |
Dong W, Huang Z T, Liu H M, et al. Crystal orientation distribution of TC18 titanium fabricated by electron beam wire deposition [J]. Chin. J. Mater. Res., 2017, 31: 203
|
[18] |
(董伟, 黄志涛, 刘红梅等. 电子束成形TC18钛合金晶体取向规律研究 [J]. 材料研究学报, 2017, 31: 203)
|
[19] |
Wang B. Study on wire and arc additive manufacturing forming process of TC4 titanium alloy [D]. Shenyang: Shenyang Aerospace University, 2018
|
[19] |
(王斌. TC4钛合金电弧熔丝沉积成形工艺研究 [D]. 沈阳: 沈阳航空航天大学, 2018)
|
[20] |
Ji L, Lu J P, Tang S Y, et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing [J]. Materials, 2018, 11: 1104
|
[21] |
Shi X Z, Ma S Y, Liu C M, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, 684A: 196
|
[22] |
Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing [J]. Mater. Des., 2016, 102: 30
|
[23] |
Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V [J]. Mater. Charact., 2016, 114: 103
doi: 10.1016/j.matchar.2016.02.001
|
[24] |
Liu N. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire [D]. Harbin: Harbin Institute of Technology, 2013
|
[24] |
(刘宁. TC4钛合金TIG填丝堆焊成型技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
|
[25] |
Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy [J]. Int. J. Adv. Manuf. Technol., 2011, 57: 597
|
[26] |
He Z. Effect of ultrasonic impact on the properties of arc additive manufacturing of titanium alloy [D]. Wuhan: Huazhong University of Science & Technology, 2016
|
[26] |
(何智. 超声冲击电弧增材制造钛合金零件的组织性能研究 [D]. 武汉: 华中科技大学, 2016)
|
[27] |
Almeida P M S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT) [A]. Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2010: 25
|
[28] |
Sun Z, Lv Y H, Xu B S, et al. Study on rapid prototyping technology based on CMT welding [J]. J. Acad. Arm. For. Eng., 2014, 28(2): 85
|
[28] |
(孙哲, 吕耀辉, 徐滨士等. 基于CMT焊接快速成形工艺研究 [J]. 装甲兵工程学院学报, 2014, 28(2): 85)
|
[29] |
Zhang H T, Feng J C, Hu L L. Energy input and metal transfer behavior of CMT welding process [J] Mater. Sci. & Technol., 2012, 20(2): 128
|
[29] |
(张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为 [J]. 材料科学与工艺, 2012, 20(2): 128)
|
[30] |
Bontha S, Klingbeil N W, Kobryn P A, et al. Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures [J]. Mater. Sci. Eng., 2009, 513-514A: 311
|
[31] |
Vasinonta A, Beuth J L, Griffith M L. A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures [J]. J. Manuf. Sci. Eng., 2001, 123: 615
|
[32] |
Bates B E, Hardt D E. A real-time calibrated thermal model for closed-loop weld bead geometry control [J]. J. Dyn. Sys., Meas., Control., 1985, 107: 25
|
[33] |
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
|
[34] |
Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps [J]. Acta. Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
|
[35] |
Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823
doi: 10.1016/0001-6160(86)90056-8
|
[36] |
Rosenthal D. The theory of moving sources of heat and its application to metal treatments [J]. Trans. ASME, 1946, 68: 849
|
[37] |
Dykhuizen R, Dobranich D. Analytical Thermal Models for the LENS Process [R]. Albuquerque: Sandia National Laboratories Internal Report, 1998
|
[38] |
Vasinonta A. Process maps for melt pool size and residual stress in laser-based solid freeform fabrication [D]. Pennsylvania: Carnegie Mellon University, 2002
|
[39] |
Ahmed T, Rack H J. Phase transformations during cooling in α+β titanium alloys [J]. Mater. Sci. Eng., 1998, 243A: 206
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|