|
|
Inconel 600合金中不同类型晶界处铬的浓度 |
郑合凤, 师梦杰, 毛强, 张孟超, 李慧( ) |
上海大学微结构重点实验室 上海 200444 |
|
Chromium Concentration Near Grain Boundaries with Various Characters in Inconel Alloy 600 |
ZHENG Hefeng, SHI Mengjie, MAO Qiang, ZHANG Mengchao, LI Hui( ) |
Key Laboratory for Microstructures, Shanghai University, Shanghai 200444, China |
引用本文:
郑合凤, 师梦杰, 毛强, 张孟超, 李慧. Inconel 600合金中不同类型晶界处铬的浓度[J]. 材料研究学报, 2020, 34(7): 511-517.
Hefeng ZHENG,
Mengjie SHI,
Qiang MAO,
Mengchao ZHANG,
Hui LI.
Chromium Concentration Near Grain Boundaries with Various Characters in Inconel Alloy 600[J]. Chinese Journal of Materials Research, 2020, 34(7): 511-517.
[1] |
Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corros., 2008, 64(9): 707
doi: 10.5006/1.3278508
|
[2] |
Mathon C, Chaudhary A, Gay N, et al. Predicting tube repair at French nuclear steam generators using statistical modeling [J]. Nucl. Engi. Desi., 2014; 269: 29
|
[3] |
Spigarelli S, Cabibbo M, Evangelista E, et al. Analysis of the creep strength of a low-carbon AISI 304 steel with low-Σ grain boundaries [J]. Mater. Sci. Eng. A., 2003, 352(1): 93
doi: 10.1016/S0921-5093(02)00903-6
|
[4] |
Lee T H, Suh H Y, Han S K, et al. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes [J]. J. Nucl. Mater., 2016, 479:85
doi: 10.1016/j.jnucmat.2016.06.038
|
[5] |
Stiller K, Nilsson J O, Norring K. Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690 [J]. Metall. Mater. Trans. A., 1996, 27(2): 327
doi: 10.1007/BF02648410
|
[6] |
Ma Y C, Li S, Hao X C, et al. Study on grain boundary carbides and chromium depletion near grain boundary in two kinds of 690 alloys with different N contents [J]. Acta. Metall. Sin., 2016, 52: 980
doi: 10.11900/0412.1961.2015.00636
|
[6] |
(马颖澈, 李硕, 郝宪朝等. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究[J]. 金属学报, 2016, 52: 980)
doi: 10.11900/0412.1961.2015.00636
|
[7] |
Watanabe T. An approach to grain boundary design of strong and ductile polycrystals[J]. Res. Mech., 1984, 11: 47
|
[8] |
Aust K T, Erb U, Palumbo G. Interface control for resistance to intergranular cracking [J]. Mater. Sci. Eng. A., 1994, 176(1-2): 329
doi: 10.1016/0921-5093(94)90995-4
|
[9] |
Telang A, Gill A S, Zweiacker K, et al. Effect of thermo-mechanical processing on sensitization and corrosion in alloy 600 studied by SEM- and TEM-Based diffraction and orientation imaging techniques [J]. J. Nucl. Mater., 2018, 505: 276
doi: 10.1016/j.jnucmat.2017.07.053
|
[10] |
Bi H Y, Kokawa H, Wang Z J, et al. Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel [J]. Scr. Mater., 2003, 49(3): 219
doi: 10.1016/S1359-6462(03)00261-6
|
[11] |
Lim Y S, Kim J S, Kim H P, et al. The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated Alloy 690 [J]. J. Nucl. Mater., 2004, 335(1): 108
doi: 10.1016/j.jnucmat.2004.07.038
|
[12] |
Li H, Ma J R, Liu X R, et al. Morphology evolution of grain boundary carbides in highly twinned inconel alloy 600 [J]. Mater. Sci. For., 2016, 879: 1111
|
[13] |
Palumbo G, Aust K T, Lehockey E M, et al. On a more restrictive geometric criterion for “special” CSL grain boundaries [J]. Scr. Mater., 1998, 38(11): 1685
doi: 10.1016/S1359-6462(98)00077-3
|
[14] |
Hu R, Bai G, Li J, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy [J]. Mater. Sci. Eng. A., 2012, 548: 83
doi: 10.1016/j.msea.2012.03.092
|
[15] |
Li H, Xia S, Zhou B X, et al. Evolution of carbide morphology precipitated at grain in boundaries Ni-based alloy 690 [J]. Acta. Metall. Sin., 2009, 45(2): 195
|
[15] |
(李慧, 夏爽, 周邦新等. 镍基690合金时效过程中晶界碳化物的形貌演化 [J]. 金属学报, 2009, 45(2): 195)
|
[16] |
Baik S II, Olszta M J, Bruemmer S M, et al. Grain-boundary structure and segregation behavior in a nickel-base stainless alloy [J]. Scr. Mater., 2012, 66(10): 809
doi: 10.1016/j.scriptamat.2012.02.014
|
[17] |
Randle V, Coleman M, Waterton M. The role of Σ9 boundaries in grain boundary engineering [J]. Metall. Mater. Trans. A, 2011, 42(3): 582
doi: 10.1007/s11661-010-0302-7
|
[18] |
Carpenter S D, Carpenter D. Stacking faults and superlattice observations during transmission electron microscopy of a (Fe,Cr)7C3 carbide [J]. Mater. Lett., 2003, 57(28): 4460
doi: 10.1016/S0167-577X(03)00343-4
|
[19] |
Jiao S Y, Zheng L, Dong J X, et al. Evolutionary dynamics simulation and process optimization of 690 alloy grain boundary carbide and chromium-depleted zone [J]. J. Mech. Eng., 2010, 46(14): 53
|
[19] |
(焦少阳, 郑磊, 董建新等. 690合金晶界碳化物和贫铬区演化动力学模拟及工艺优化 [J]. 机械工程学报, 2010, 46(14): 53)
|
[20] |
Dong R F, Li J S, Zhang T B, et al. Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy [J]. Mater. Charact., 2016, 122: 189
doi: 10.1016/j.matchar.2016.11.002
|
[21] |
Jiao S Y, Zhang M C, Zheng L, et al. Investigation of carbide precipitation process and chromium depletion during thermal treatment of alloy 690 [J]. Metall. Mater. Trans. A., 2010, 41(1): 26
doi: 10.1007/s11661-009-0082-0
|
[22] |
Thuvander M, Miller M K, Stiller K. Grain boundary segregation during heat treatment at 600℃ in a model alloy 600 [J]. Mater. Sci. Eng. A, 1999, 270(1): 38
doi: 10.1016/S0921-5093(99)00236-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|