Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 518-526    DOI: 10.11901/1005.3093.2019.478
  研究论文 本期目录 | 过刊浏览 |
CMT成型TC4-DT合金的组织及其形成机理的CET模型预测
杜子杰1,2, 李文渊2(), 刘建荣2, 锁红波3, 王清江2
1.中国科学技术大学 合肥 230026
2.中国科学院金属研究所 沈阳 110016
3.青岛卓思三维智造技术有限公司 青岛 266109
Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode
DU Zijie1,2, LI Wenyuan2(), LIU Jianrong2, SUO Hongbo3, WANG Qingjiang2
1.University of Science and Technology of China, Hefei 230026,China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China
3.Qingdao JointX Intelligent Manufacturing Limited, Qingdao 266109,China
引用本文:

杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT成型TC4-DT合金的组织及其形成机理的CET模型预测[J]. 材料研究学报, 2020, 34(7): 518-526.
Zijie DU, Wenyuan LI, Jianrong LIU, Hongbo SUO, Qingjiang WANG. Microstructure and Columnar-equiaxed Transformation Prediction of TC4-DT Alloy Prepared by Arc Additive Manufacturing with Coaxial Wire Feeding of Cold Metal Transfer Mode[J]. Chinese Journal of Materials Research, 2020, 34(7): 518-526.

全文: PDF(3181 KB)   HTML
摘要: 

采用冷金属过渡模式(Cold Metal Transfer, CMT)的同轴送丝电弧熔丝增材制造技术制备了TC4-DT钛合金直壁墙试块,对其高低倍组织及其形成机理进行了研究,使用3D-Rosenthal模型对其凝固过程进行了模拟计算。低倍组织表明,弧形热影响区为细等轴晶,堆积区底层为细柱状晶区,中层和顶层为等轴晶与短柱状晶的混合。这种组织,与电子束熔丝和旁轴送丝电弧熔丝的粗大柱状晶组织有明显的不同;堆积区的高倍组织以编织状的α相板条为主,在部分原始β晶界可见连续的晶界α相和集束状α相板条,且有热影响层界线,与电子束熔丝和旁轴送丝电弧熔丝的高倍组织接近。模拟计算的结果表明,熔池边界的最大温度梯度约为12652.6 K/cm,最大凝固速度约为1.5 cm/s,该凝固条件处于柱状晶-等轴晶转变(Columnar-Equiaxed Transformation, CET)模型中的混合组织区;根据计算结果,提高输入功率(P)和焊枪移动速度(V)可促进等轴晶的生成,当P>153 W、V>3.2 mm/s时可得到柱状晶与等轴晶混合的低倍组织,且晶粒尺寸随着V的增大呈减小的趋势。

关键词 金属材料TC4-DT钛合金CMT电弧熔丝增材制造CET模型3D-Rosenthal模型    
Abstract

A TC4-DT Ti-alloy of two tracks and three layers was manufactured via arc additive manufacturing (CMT WAAM) coupled with cold metal transfer mode coaxial wire feeding, while the TC4-DT Ti-alloy wire of 1.2 mm in diameter was adoped as feeding wire. The microstructure of the acquired alloy was then characterized. Results show that fine equiaxed prior β-grains were found in the cambered heat affected zone; The bottom layer of the deposition zone consisted of thin columnar grains; The middle and top layers were composed of equiaxed grains and short columnar grains. Which was quite different from the coarse columnar grains produced by processes of EBRM and TIG WAAM. The microstructure of deposition zone presents basket weave α-phase laths, similar with that of EBRM and TIG WAAM. The 3D-Rosenthal solution was used to investigate the formation of the microstructure of the deposition zone. The maximum temperature gradient of the molten pool boundary calculated is about 12652.6 K/cm, and the maximum solidification speed is about 1.5 cm/s. The calculated solidification conditions just located in the mixed zone in the columnar-equiaxed-transformation (CET) model, consistent with the experiment results. The calculation results demonstrated that with the increasing input power P and the welding gun traveling speed V, the formation of equiaxed grains was promoted, while the grain size would gradually decrease with the increase of V. The mixed macrostructure would form when P>153 W and V>3.2 mm/s.

Key wordsmetallic materials    TC4-DT Ti-alloy    CMT WAAM    CET model    3D-Rosenthal solution
收稿日期: 2019-10-15     
ZTFLH:  TG146  
作者简介: 杜子杰,男,1995年生,硕士
图1  用CMT电弧熔丝增材制造试块的堆积路径示意图和试块示意图
AlVFeONHTi
6.154.25<0.050.130.0050.003Bal.
表1  TC4-DT合金的成分
图2  样品试块整体和局部的低倍组织
图3  沿堆积方向原始β晶粒平均宽度的变化
图4  热影响区和堆积区的高倍组织
图5  层界线组织的形貌
图6  CMT成型TC4-DT的G-R图和低倍组织分区
图7  CMT打印三维模型的示意图
图8  3D-Rosenthal模型的预测结果
图9  CMT工艺参数对TC4-DT低倍组织的影响
图10  热影响区及层界线组织分区的示意图
[1] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
[1] (张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1)
[2] Wang J Y. Titanium Alloy for Aviation [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1985: 1
[2] (王金友. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1985: 1)
[3] Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys [J]. Titanium Ind. Prog., 2004, 21(5): 19
[3] (李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景 [J]. 钛工业进展, 2004, 21(5): 19)
[4] Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
[4] (刘卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38)
[5] Guo P, Zhao Y Q, Hong Q. Effect of microstructure on fatigue crack propagation rate of TC4-DT titanium alloy [J]. Trans. Mater. Heat Treat., 2018, 39(4): 31
[5] (郭萍, 赵永庆, 洪权. 显微组织对TC4-DT钛合金疲劳裂纹扩展速率的影响 [J]. 材料热处理学报, 2018, 39(4): 31)
[6] Guo P, Zhao Y Q, Zeng W D, et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys [J]. Mater. Sci. Eng., 2013, 563A: 106
[7] Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
doi: 10.1016/j.matdes.2011.09.004
[8] Feng B X, Mao X N, Yang G J. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2009, 512A: 105
[9] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[10] Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
[10] (巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66)
[11] Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromachin. Mould, 2012, (Suppl.1): 20
[11] (李涤尘, 田小永, 王永信等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (增刊): 20)
[12] Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2014, 46: 675
[12] (赵剑峰, 马智勇, 谢德巧等. 金属增材制造技术 [J]. 南京航空航天大学学报, 2014, 46: 675)
[13] Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
[14] Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
[15] Lu S L, Qian M, Tang H P, et al. Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting [J]. Acta Mater., 2016, 104: 303
[16] Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
[17] Suo H B. Microstructure and mechanical properties of TC4 produced by electron beam rapid manufacturing [D]. Wuhan: Huazhong University of Science & Technology, 2014
[17] (锁红波. 电子束快速成形TC4钛合金显微组织及力学性能研究 [D]. 武汉: 华中科技大学, 2014)
[18] Dong W, Huang Z T, Liu H M, et al. Crystal orientation distribution of TC18 titanium fabricated by electron beam wire deposition [J]. Chin. J. Mater. Res., 2017, 31: 203
[18] (董伟, 黄志涛, 刘红梅等. 电子束成形TC18钛合金晶体取向规律研究 [J]. 材料研究学报, 2017, 31: 203)
[19] Wang B. Study on wire and arc additive manufacturing forming process of TC4 titanium alloy [D]. Shenyang: Shenyang Aerospace University, 2018
[19] (王斌. TC4钛合金电弧熔丝沉积成形工艺研究 [D]. 沈阳: 沈阳航空航天大学, 2018)
[20] Ji L, Lu J P, Tang S Y, et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing [J]. Materials, 2018, 11: 1104
[21] Shi X Z, Ma S Y, Liu C M, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, 684A: 196
[22] Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing [J]. Mater. Des., 2016, 102: 30
[23] Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V [J]. Mater. Charact., 2016, 114: 103
doi: 10.1016/j.matchar.2016.02.001
[24] Liu N. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire [D]. Harbin: Harbin Institute of Technology, 2013
[24] (刘宁. TC4钛合金TIG填丝堆焊成型技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[25] Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy [J]. Int. J. Adv. Manuf. Technol., 2011, 57: 597
[26] He Z. Effect of ultrasonic impact on the properties of arc additive manufacturing of titanium alloy [D]. Wuhan: Huazhong University of Science & Technology, 2016
[26] (何智. 超声冲击电弧增材制造钛合金零件的组织性能研究 [D]. 武汉: 华中科技大学, 2016)
[27] Almeida P M S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT) [A]. Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2010: 25
[28] Sun Z, Lv Y H, Xu B S, et al. Study on rapid prototyping technology based on CMT welding [J]. J. Acad. Arm. For. Eng., 2014, 28(2): 85
[28] (孙哲, 吕耀辉, 徐滨士等. 基于CMT焊接快速成形工艺研究 [J]. 装甲兵工程学院学报, 2014, 28(2): 85)
[29] Zhang H T, Feng J C, Hu L L. Energy input and metal transfer behavior of CMT welding process [J] Mater. Sci. & Technol., 2012, 20(2): 128
[29] (张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为 [J]. 材料科学与工艺, 2012, 20(2): 128)
[30] Bontha S, Klingbeil N W, Kobryn P A, et al. Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures [J]. Mater. Sci. Eng., 2009, 513-514A: 311
[31] Vasinonta A, Beuth J L, Griffith M L. A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures [J]. J. Manuf. Sci. Eng., 2001, 123: 615
[32] Bates B E, Hardt D E. A real-time calibrated thermal model for closed-loop weld bead geometry control [J]. J. Dyn. Sys., Meas., Control., 1985, 107: 25
[33] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
[34] Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps [J]. Acta. Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
[35] Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823
doi: 10.1016/0001-6160(86)90056-8
[36] Rosenthal D. The theory of moving sources of heat and its application to metal treatments [J]. Trans. ASME, 1946, 68: 849
[37] Dykhuizen R, Dobranich D. Analytical Thermal Models for the LENS Process [R]. Albuquerque: Sandia National Laboratories Internal Report, 1998
[38] Vasinonta A. Process maps for melt pool size and residual stress in laser-based solid freeform fabrication [D]. Pennsylvania: Carnegie Mellon University, 2002
[39] Ahmed T, Rack H J. Phase transformations during cooling in α+β titanium alloys [J]. Mater. Sci. Eng., 1998, 243A: 206
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.