|
|
作为钠硫电池正极的碳约束NiS2纳米结构中钠离子的储运特性 |
周抒予,靳晓哲,刘佳,田瑞雪,吴爱民,黄昊( ) |
大连理工大学材料科学与工程学院 辽宁省能源材料及器件重点实验室 大连 116024 |
|
Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries |
ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao( ) |
Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
周抒予,靳晓哲,刘佳,田瑞雪,吴爱民,黄昊. 作为钠硫电池正极的碳约束NiS2纳米结构中钠离子的储运特性[J]. 材料研究学报, 2020, 34(3): 191-197.
Shuyu ZHOU,
Xiaozhe JIN,
jia LIU,
Ruixue TIAN,
Aimin WU,
Hao HUANG.
Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. Chinese Journal of Materials Research, 2020, 34(3): 191-197.
[1] | Xin S, Yin Y X, Guo Y G, et al. A high-energy room-temperature sodium-sulfur battery [J]. Adv. Mater., 2014, 26: 1261 | [2] | Hwang T H, Jung D S, Kim J S, et al. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature [J]. Nano Lett., 2013, 13: 4532 | [3] | Yang F C, Mousavie S M A, Oh T K, et al. Sodium-sulfur flow battery for low-cost electrical storage [J]. Adv. Energy Mater., 2018, 8: 1701991 | [4] | Okuyama R, Nakashima H, Sano T, et al. The effect of metal sulfides in the cathode on Na/S battery performance [J]. J. Power Sources, 2001, 93: 50 | [5] | Wang C L, Wang H, Hu X F, et al. Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries [J]. Adv. Energy Mater., 2019, 9: 1803251 | [6] | Lu Y, Li X N, Liang J W, et al. A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries [J]. Nanoscale, 2016, 8: 17616 | [7] | Wang H Q, Li S, Li D, et al. TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries [J]. Energy, 2014, 75: 597 | [8] | Du W Y, Xu Q J, Zhang Y Q, et al. Synthesis of hollow porous carbon microspheres and their application to room-temperature Na-S batteries [J]. Mater. Lett., 2018, 221: 66 | [9] | Park C W, Ahn J H, Ryu H S, et al. Room-temperature solid-state sodium/sulfur battery [J]. Electrochem. Solid-State Lett., 2006, 9: A123 | [10] | Ryu H, Kim T, Kim K, et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte [J]. J. Power Sources, 2011, 196: 5186 | [11] | Yang T T, Gao W, Guo B S, et al. A railway-like network electrode design for room temperature Na-S battery [J]. J. Mater. Chem., 2019, 7A: 150 | [12] | Yu X W, Manthiram A. Capacity enhancement and discharge me-chanisms of room-temperature sodium-sulfur batteries [J]. Chem. Electro. Chem, 2014, 1: 1275 | [13] | Tanibata N, Tsukasaki H, Deguchi M, et al. Characterization of sulfur nanocomposite electrodes containing phosphorus sul?de for high-capacity all-solid-state Na/S batteries [J]. Solid State Ionics, 2017, 311: 6 | [14] | Gu Z Y, Gao S, Huang H, et al. Electrochemical behavior of MWCNT-constraint SnS2 nanostructure as the anode for lithium-ion batteries [J]. Acta Phys. Chim. Sin., 2017, 33: 1197 | [14] | 谷泽宇, 高嵩, 黄昊等. 多壁纳米碳管约束二硫化锡作为锂离子电池负极的电化学行为 [J]. 物理化学学报, 2017, 33: 1197 | [15] | Wang T S, Hu P, Zhang C J, et al. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery [J]. ACS Appl. Mater. Interfaces, 2016, 8: 7811 | [16] | Bi R, Zeng C, Haung H W, et al. Metal-organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage [J]. J. Mater. Chem., 2018, 6A: 14077 | [17] | Yu X W, Manthiram A. Highly reversible room-temperature sulfur/long-chain sodium polysul?de batteries [J]. J. Phys. Chem. Lett., 2015, 5: 1943 | [18] | Kim L, Kim C, Kim H, et al. Initial discharge behavior of an ultra high loading 3D sulfur cathode for a room-temperature Na/S battery [J]. J. Nanosci. Nanotechnol., 2018, 18: 6524 | [19] | Chen Y M, Liang W F, Li S, et al. Nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur battery [J]. J. Mater. Chem., 2016, 4A: 12471 | [20] | Yu X W, Manthiram A. Ambient-temperature sodium-sulfur batteries with a sodiated na?on membrane and a carbon nano?ber-activated carbon composite electrode [J]. Adv. Energy Mater., 2015, 5: 1500350 | [21] | Kim J S, Ahn H J, Ryu H S, et al. The discharge properties of Na/Ni3S2 cell at ambient temperature [J]. J. Power Sources, 2008, 178: 852 | [22] | Zhang W M, Wu X L, Hu J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries [J]. Adv. Funct. Mater., 2008, 18: 3941 | [23] | Kim J S, Ahn H J, Kim I P, et al. The short-term cycling properties of Na/PVDF/S battery at ambient temperature [J]. J. Solid State Electrochem., 2008, 12: 861 | [24] | Bauer I, Kohl M, Althues H, et al. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes [J]. Chem. Commun., 2014, 50: 3208 | [25] | Wenzel S, Metelmann H, Rai? C, et al. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte [J]. J. Power Sources, 2013, 243: 758 | [26] | Jin X Z, Huang H, Wu A M, et al. Inverse capacity growth and pocket effect in SnS2 semi-filled carbon nanotube anode [J]. ACS Nano, 2018, 12: 8037 | [27] | Huang H, Gao S, Wu A M, et al. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation [J]. Nano Energy, 2017, 31: 74 | [28] | Yan Y, Yin Y X, Guo Y G, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodiumion batteries [J]. Adv. Energy Mater., 2014, 4: 1301584 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|