|
|
固溶+时效处理对粉末冶金Ti-22Al-25Nb合金显微硬度的影响 |
贾建波1,鹿超1,杨志刚1,董添添1,顾勇飞1,徐岩1,2( ) |
1. 燕山大学先进锻压成形技术与科学教育部重点实验室 秦皇岛 066004 2. 燕山大学机械工程学院 秦皇岛 066004 |
|
Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy |
JIA Jianbo1,LU Chao1,YANG Zhigang1,DONG Tiantian1,GU Yongfei1,XU Yan1,2( ) |
1. Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004, China 2. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China |
引用本文:
贾建波,鹿超,杨志刚,董添添,顾勇飞,徐岩. 固溶+时效处理对粉末冶金Ti-22Al-25Nb合金显微硬度的影响[J]. 材料研究学报, 2020, 34(3): 198-208.
Jianbo JIA,
Chao LU,
Zhigang YANG,
Tiantian DONG,
Yongfei GU,
Yan XU.
Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy[J]. Chinese Journal of Materials Research, 2020, 34(3): 198-208.
[1] | Feng A H, Li B B, Shen J. Recent advances on Ti2AlNb- based alloys [J]. J. Mater. Metall., 2012, 10: 30 | [1] | 冯艾寒, 李渤渤, 沈军. Ti2AlNb基合金的研究进展 [J]. 材料与冶金学报, 2012, 10: 30 | [2] | Li D Q, Boehlert C J. Processing effects on the grain-boundary character distribution of the orthorhombic phase in Ti-Al-Nb alloys [J]. Metall. Mater. Trans. A, 2005, 36: 2569 | [3] | Li Y J, Zhao Y, Li Q, et al. Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy join-ts [J]. Mater. Des., 2017, 114: 226 | [4] | Kumpfert J. Intermetallic alloys based on orthorhombic Titanium Aluminide [J]. Adv. Eng. Mater., 2001, 3: 851 | [5] | Li H B, Wang Y J, Gu Y F, et al. Bonding strength and wear resistance of Cr3C2-NiCr and Ni60A thermal spray coatings on H13 steel surface [J]. J. Yanshan Univ., 2017, 41: 496 | [5] | 李洪波, 王依敬, 顾勇飞等. H13钢表面喷涂Cr3C2-NiCr和Ni60A涂层的结合强度及耐磨性研究 [J]. 燕山大学学报, 2017, 41: 496 | [6] | Zhao J L, Yang Z N, Zhang F C. Study on carbide-free bainite microstructure and mechanical properties of 70Si3Mn steel [J]. J. Yanshan Univ., 2015, 39: 199 | [6] | 赵佳莉, 杨志南, 张福成. 70Si3Mn钢中无碳化物贝氏体组织及其性能研究 [J]. 燕山大学学报, 2015, 39: 199 | [7] | Shi B D, Peng Y, Han Y, et al. Investigation on anisotropic mechanical behavior of AZ31 Mg alloy rolling sheet [J]. J. Yanshan Univ., 2015, 39: 221 | [7] | 石宝东, 彭艳, 韩宇等. AZ31镁合金轧制板材各向异性力学性能研究 [J]. 燕山大学学报, 2015, 39: 221 | [8] | Zhou M B, Tang J L. Effect of austenitizing heating temperature on microstructure and hardness of Molybdenum-boron high strength steel [J]. J. Yanshan Univ., 2017, 41: 32 | [8] | 周明博, 唐景林. 奥氏体化加热温度对钼硼高强钢组织与硬度的影响 [J]. 燕山大学学报, 2017, 41: 32 | [9] | Kumpfert J, Kaysser W A. Othorhombic titanium aluminides: Phases, phase transformations and microstructure evolution [J]. Z. Metallkd., 2001, 92: 128 | [10] | Wang Y H, Cheng X Z, Zang J B. Development of diamond and SiC composited heat sink materials [J]. J. Yanshan Univ., 2015, 39: 390 | [10] | 王艳辉, 成晓哲, 臧建兵. 金刚石、碳化硅复合热传导材料的发展 [J]. 燕山大学学报, 2015, 39: 390 | [11] | Li H B, Han J C, Gu Y F, et al. Abrasive resistance of WC-10Co-4Cr coating deposited T10 on steel surface by HVOF [J]. J. Yanshan Univ., 2016, 40: 22 | [11] | 李洪波, 韩金成, 顾勇飞等. T10钢表面HVOF喷涂WC-10Co-4Cr涂层的耐磨性研究 [J]. 燕山大学学报, 2016, 40: 22 | [12] | Boehlert C J, Miracle D B. Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metall. Mater. Trans. A, 1999, 30: 2349 | [13] | Boehlert C J. Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metall. Mater. Trans. A, 2001, 32: 1977 | [14] | Li S Y. Phase transformation and superplasticity deformation mechanism in Ti2A1Nb-based alloys [D]. Harbin: Harbin Institute of Technology, 2013 | [14] | 李少雨. Ti2AlNb基合金相变及超塑性变形机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013 | [15] | Kazantseva N V, Demakov S L, Popov A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→O phase transformation [J]. Phys. Met. Metallogr., 2007, 103: 378 | [16] | Wu Y, Yang D Z, Song G M. The formation mechanism of the O phase in a Ti3Al-Nb alloy [J]. Intermetallics, 2000, 8: 629 | [17] | Muraleedharan K, Banerjee D. Phase transformations involving the α2 and O phases in Ti-Al-Nb alloys [J]. Scr. Metall. Mater., 1993, 29: 527 | [18] | Wang W. Research on three typical microstructures and mechanical properties of Ti-22A1-25Nb Alloy [D]. Xi'an: Northwestern Polytechnical University, 2015 | [18] | 王伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究 [D]. 西安: 西北工业大学, 2015 | [19] | Zhu B, Zeng W D, Jiang Y, et al. Quantitative analysis of effect of heat treatment on microstructure and microhardness of Ti2AlNb alloy [J]. Trans. Mater. Heat Treat., 2016, 37(1): 71 | [19] | 朱斌, 曾卫东, 江悦等. 定量分析热处理对Ti2AlNb合金显微组织及硬度的影响 [J]. 材料热处理学报, 2016, 37(1): 71 | [20] | Tian W, Zhong Y, Liang X B, et al. Relationship between forming process and microstructure-properties of Ti-22Al-25Nb alloy ring [J]. Trans. Mater. Heat Treat., 2014, 35(10): 49 | [20] | 田伟, 钟燕, 梁晓波等. Ti-22Al-25Nb合金环形件成形工艺与组织性能关系 [J]. 材料热处理学报, 2014, 35(10): 49 | [21] | Ma C Y. Research on laser welding process and orgnization performance of TC4/Ti22A125Nb [D]. Ji’nan: Shandong University, 2017 | [21] | 马长语. TC4/Ti-22Al-25Nb激光焊接工艺与组织性能研究 [D]. 济南: 山东大学, 2017 | [22] | Shen L J. Process, microstructure and properties study on transient liquid phase bonding of Ti2A1Nb based alloy [D]. Nanchang: Nanchang University of Aeronautics, 2017 | [22] | 沈丽君. Ti2AlNb基合金TLP连接工艺及接头组织性能研究 [D]. 南昌: 南昌航空大学, 2017 | [23] | Zhao H Z, Lu B, Tong M, et al. Tensile behavior of Ti-22Al-24Nb-0.5Mo in the range 25~650℃ [J]. Mater. Sci. Eng., 2016, 679A: 455 | [24] | Wang W, Zeng W D, Yang J, et al. Microstructure and mechanical properties of the isothermally forged Ti-22Al-25Nb (at%) alloy [J]. Rare Met. Mater. Eng., 2016, 45: 1605 | [24] | 王伟, 曾卫东, 杨锦等. 等温锻造Ti-22Al-25Nb合金的显微组织与力学性能 [J]. 稀有金属材料与工程, 2016, 45: 1605 | [25] | Liang X B, Cheng Y J, Zhang J W, et al. Effects of heat treatment on microstructure and properties of β-forged Ti-22Al-25Nb alloy [J]. Chin. J. Nonferrous Met., 2010, 20(Suppl.1): 611 | [25] | 梁晓波, 程云君, 张建伟等. 热处理对β锻造Ti-22Al-25Nb合金组织和性能的影响 [J]. 中国有色金属学报, 2010, 20(增刊): 611 | [26] | Zhang Y, Liu J Y, Zhang J W. Microstructure transition and tensile properties of Ti-22Al-25Nb intermetallic alloy forged in β-phase zone [J]. Chin. J. Nonferrous Met., 2008, 18: 30 | [26] | 张艺, 刘俊友, 张建伟. β锻造Ti-22Al-25Nb合金的组织转变与拉伸性能 [J]. 中国有色金属学报, 2008, 18: 30 | [27] | Zhou W, Yao Z K, Ma Z. Effect of solution and aging treatment on microstructure of coarse-grain Ti-22Al-25Nb alloy [J]. Hot Work. Technol., 2018, 47(14): 208 | [27] | 周伟, 姚泽坤, 马震. 固溶和时效处理对粗晶Ti-22Al-25Nb合金显微组织的影响 [J]. 热加工工艺, 2018, 47(14): 208 | [28] | Wang S L, Zeng W D, Ma X, et al. Effect of solution temperature on microstructure of Ti-22Al-25Nb alloy [J]. Hot Work. Technol., 2009, 38(8): 106 | [28] | 王邵丽, 曾卫东, 马雄等. 固溶温度对Ti-22Al-25Nb合金微观组织的影响 [J]. 热加工工艺, 2009, 38(8): 106 | [29] | Boehlert C J, Majumdar B S, Seetharaman V, et al. The microstructural evolution in Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metall. Mater. Trans., 1999, 30A: 2305 | [30] | Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys [J]. Mater. Sci. Eng., 2000, 283A: 17 | [31] | Lee D G, Li C L, Lee Y T, et al. Effect of temperature on grain growth kinetics of high strength Ti-2Al-9.2Mo-2Fe alloy [J]. Thermochim. Acta, 2014, 586: 66 | [32] | Hall E O. The Lüders deformation of mild steel [J]. J. Photoch. Photobio., 1965, 13B: 534 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|