Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 198-208    DOI: 10.11901/1005.3093.2019.445
  研究论文 本期目录 | 过刊浏览 |
固溶+时效处理对粉末冶金Ti-22Al-25Nb合金显微硬度的影响
贾建波1,鹿超1,杨志刚1,董添添1,顾勇飞1,徐岩1,2()
1. 燕山大学先进锻压成形技术与科学教育部重点实验室 秦皇岛 066004
2. 燕山大学机械工程学院 秦皇岛 066004
Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy
JIA Jianbo1,LU Chao1,YANG Zhigang1,DONG Tiantian1,GU Yongfei1,XU Yan1,2()
1. Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004, China
2. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
引用本文:

贾建波,鹿超,杨志刚,董添添,顾勇飞,徐岩. 固溶+时效处理对粉末冶金Ti-22Al-25Nb合金显微硬度的影响[J]. 材料研究学报, 2020, 34(3): 198-208.
Jianbo JIA, Chao LU, Zhigang YANG, Tiantian DONG, Yongfei GU, Yan XU. Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy[J]. Chinese Journal of Materials Research, 2020, 34(3): 198-208.

全文: PDF(13860 KB)   HTML
摘要: 

采用放电等离子烧结技术(SPS)在950℃/80 MPa/10 min条件下制备粉末冶金Ti-22Al-25Nb(原子分数,%)合金作为初始材料,将其分别在940~1100℃、10~120 min和800℃/8 h条件下进行固溶处理和时效处理,研究了固溶+时效处理对粉末冶金Ti-22Al-25Nb (原子分数,%) 合金的微观组织和显微硬度的影响,并建立了显微硬度的演变模型。结果表明,随着固溶温度的提高和保温时间的延长B2相的晶粒尺寸增大、均匀度提高,在940~1010℃晶粒长大的速率最低,在1100℃晶粒尺寸的均匀度达到最大值0.84。板条O相的尺寸和数量对合金的性能有显著影响。在(B2+O)两相区时效后,其尺寸和数量显著影响合金性能的次生板条O相的体积分数提高、尺寸减小,尤其是相互交叉、缠结的O/O相数量的增多,使合金的显微硬度提高;在1060℃/60 min/Water cooling(WC)+ 800℃/8 h/Furnace cooling(FC)条件下处理的合金,其显微硬度达到最大值434.92 HV。

关键词 金属材料粉末冶金Ti-22Al-25Nb合金固溶+时效处理显微组织次生O相显微硬度显微硬度演变模型    
Abstract

The powder metallurgy (P/M) Ti-22Al-25Nb (atomic fraction, %) alloy sintered by spark plasma sintering (SPS) at 950℃/80 MPa/10 min was used as the initial material and the alloy experienced the solution treatment at the temperature range of 940~1100℃ for 10~120 min and subsequently aged at 800℃/8 h. The effect of solution- and aging-treatment on the microstructure and microhardness of P/M Ti-22Al-25Nb alloy was investigated, while the model of microhardness evolution was proposed. The results show that the grain size and uniformity of B2 phase increase with the increase of solution temperature and holding time. The growth rate of B2 phase grain is the lowest in the temperature range of 940~1010℃, and the grain size uniformity reaches the maximum 0.84 at 1100℃. The size and number of secondary lath O-phase have a significant effect on the properties of the alloy. After aging in the (B2+O) two-phase region, with the increase in the volume fraction of the secondary lath O-phase and the decrease in the size of the laths, especially the increase in the number of intersecting and entangled O/O phases, the microhardness of the alloy was enhanced. The microhardness of the alloy reached the maximum value 434.92 HV after solution and aging treatment at 1060℃/60 min/water cooling (WC)+800℃/8 h/furnace cooling (FC).

Key wordsmetallic materials    powder metallurgy Ti-22Al-25Nb alloy    solution and aging treatment    microstructure    secondary O-phase    microhardness    microhardness evolution model
收稿日期: 2019-09-12     
ZTFLH:  TG146.2  
基金资助:河北省自然科学基金(E2016203157)
作者简介: 贾建波,男,1981年生,副教授,博士
No.Solution time/minSolution temperature/℃Cooling methodAging temperature/℃Aging time/hCooling method
110940,970,1000,1010,1030,1050,1060,1080,1100WC8008FC
230940,970,1000,1010,1030,1050,1060,1080,1100WC8008FC
360940,970,1000,1010,1030,1050,1060,1080,1100WC8008FC
4120940,970,1000,1010,1030,1050,1060,1080,1100WC8008FC
表1  Ti-22Al-25Nb烧结合金热处理工艺
图1  预合金粉末的SEM照片和粒度分布
图2  热处理前合金的原始组织
图3  Ti-22Al-25Nb合金经1000℃/10-120 min/WC处理后的SEM照片和OM图
图4  940~1030℃/60 min/WC处理后Ti-22Al-25Nb的显微组织
图5  保温时间为60 min不同固溶温度样品的平均晶粒尺寸

Temperature

/℃

Average grain size/μmAverage grain size/μmAverage grain size/μmAverage grain size/μm
10 min30 min60 min120 min
94043.5749.7454.0058.52
97048.4355.5560.5165.79
100050.9760.3365.0869.75
101053.0562.7568.6272.88
103061.3566.3275.9586.84
105090.66111.42120.89132.73
1060124.64139.64163.28182.48
1080138.71167.65185.99205.54
1100161.32193.12214.48241.37
表2  不同固溶处理后合金的平均晶粒尺寸
图6  Ti-22Al-25Nb合金经1000℃/10-120 min/WC+800℃/8 h/FC处理后的显微组织
图7  Ti-22Al-25Nb合金经1100℃/10~120 min/WC + 800℃/8 h/FC处理后的SEM照片
图8  经940-1100℃/60 min/WC + 800℃/8 h/FC处理后B2的晶粒分布直方图
Temperature/℃Average grain size/μmAverage grain size/μmAverage grain size/μmAverage grain size/μm
10 min30 min60 min120 min
94040.1245.5653.2360.48
97043.1547.9856.0560.64
100052.958.8762.166.77
101053.8759.8763.2970.88
103062.967.7471.2182.79
105088.64108.12117.89128.48
1060120.46132.42160.82180.73
1080135.17163.56184.09201.37
1100157.12190.21210.84239.54
表3  不同固溶+时效处理后合金的平均晶粒尺寸
图9  经不同固溶时间+800℃/8 h/FC时效后合金的显微硬度
图10  固溶+时效合金显微硬度的演变模型
[1] Feng A H, Li B B, Shen J. Recent advances on Ti2AlNb- based alloys [J]. J. Mater. Metall., 2012, 10: 30
[1] 冯艾寒, 李渤渤, 沈军. Ti2AlNb基合金的研究进展 [J]. 材料与冶金学报, 2012, 10: 30
[2] Li D Q, Boehlert C J. Processing effects on the grain-boundary character distribution of the orthorhombic phase in Ti-Al-Nb alloys [J]. Metall. Mater. Trans. A, 2005, 36: 2569
[3] Li Y J, Zhao Y, Li Q, et al. Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy join-ts [J]. Mater. Des., 2017, 114: 226
[4] Kumpfert J. Intermetallic alloys based on orthorhombic Titanium Aluminide [J]. Adv. Eng. Mater., 2001, 3: 851
[5] Li H B, Wang Y J, Gu Y F, et al. Bonding strength and wear resistance of Cr3C2-NiCr and Ni60A thermal spray coatings on H13 steel surface [J]. J. Yanshan Univ., 2017, 41: 496
[5] 李洪波, 王依敬, 顾勇飞等. H13钢表面喷涂Cr3C2-NiCr和Ni60A涂层的结合强度及耐磨性研究 [J]. 燕山大学学报, 2017, 41: 496
[6] Zhao J L, Yang Z N, Zhang F C. Study on carbide-free bainite microstructure and mechanical properties of 70Si3Mn steel [J]. J. Yanshan Univ., 2015, 39: 199
[6] 赵佳莉, 杨志南, 张福成. 70Si3Mn钢中无碳化物贝氏体组织及其性能研究 [J]. 燕山大学学报, 2015, 39: 199
[7] Shi B D, Peng Y, Han Y, et al. Investigation on anisotropic mechanical behavior of AZ31 Mg alloy rolling sheet [J]. J. Yanshan Univ., 2015, 39: 221
[7] 石宝东, 彭艳, 韩宇等. AZ31镁合金轧制板材各向异性力学性能研究 [J]. 燕山大学学报, 2015, 39: 221
[8] Zhou M B, Tang J L. Effect of austenitizing heating temperature on microstructure and hardness of Molybdenum-boron high strength steel [J]. J. Yanshan Univ., 2017, 41: 32
[8] 周明博, 唐景林. 奥氏体化加热温度对钼硼高强钢组织与硬度的影响 [J]. 燕山大学学报, 2017, 41: 32
[9] Kumpfert J, Kaysser W A. Othorhombic titanium aluminides: Phases, phase transformations and microstructure evolution [J]. Z. Metallkd., 2001, 92: 128
[10] Wang Y H, Cheng X Z, Zang J B. Development of diamond and SiC composited heat sink materials [J]. J. Yanshan Univ., 2015, 39: 390
[10] 王艳辉, 成晓哲, 臧建兵. 金刚石、碳化硅复合热传导材料的发展 [J]. 燕山大学学报, 2015, 39: 390
[11] Li H B, Han J C, Gu Y F, et al. Abrasive resistance of WC-10Co-4Cr coating deposited T10 on steel surface by HVOF [J]. J. Yanshan Univ., 2016, 40: 22
[11] 李洪波, 韩金成, 顾勇飞等. T10钢表面HVOF喷涂WC-10Co-4Cr涂层的耐磨性研究 [J]. 燕山大学学报, 2016, 40: 22
[12] Boehlert C J, Miracle D B. Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metall. Mater. Trans. A, 1999, 30: 2349
[13] Boehlert C J. Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metall. Mater. Trans. A, 2001, 32: 1977
[14] Li S Y. Phase transformation and superplasticity deformation mechanism in Ti2A1Nb-based alloys [D]. Harbin: Harbin Institute of Technology, 2013
[14] 李少雨. Ti2AlNb基合金相变及超塑性变形机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
[15] Kazantseva N V, Demakov S L, Popov A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→O phase transformation [J]. Phys. Met. Metallogr., 2007, 103: 378
[16] Wu Y, Yang D Z, Song G M. The formation mechanism of the O phase in a Ti3Al-Nb alloy [J]. Intermetallics, 2000, 8: 629
[17] Muraleedharan K, Banerjee D. Phase transformations involving the α2 and O phases in Ti-Al-Nb alloys [J]. Scr. Metall. Mater., 1993, 29: 527
[18] Wang W. Research on three typical microstructures and mechanical properties of Ti-22A1-25Nb Alloy [D]. Xi'an: Northwestern Polytechnical University, 2015
[18] 王伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究 [D]. 西安: 西北工业大学, 2015
[19] Zhu B, Zeng W D, Jiang Y, et al. Quantitative analysis of effect of heat treatment on microstructure and microhardness of Ti2AlNb alloy [J]. Trans. Mater. Heat Treat., 2016, 37(1): 71
[19] 朱斌, 曾卫东, 江悦等. 定量分析热处理对Ti2AlNb合金显微组织及硬度的影响 [J]. 材料热处理学报, 2016, 37(1): 71
[20] Tian W, Zhong Y, Liang X B, et al. Relationship between forming process and microstructure-properties of Ti-22Al-25Nb alloy ring [J]. Trans. Mater. Heat Treat., 2014, 35(10): 49
[20] 田伟, 钟燕, 梁晓波等. Ti-22Al-25Nb合金环形件成形工艺与组织性能关系 [J]. 材料热处理学报, 2014, 35(10): 49
[21] Ma C Y. Research on laser welding process and orgnization performance of TC4/Ti22A125Nb [D]. Ji’nan: Shandong University, 2017
[21] 马长语. TC4/Ti-22Al-25Nb激光焊接工艺与组织性能研究 [D]. 济南: 山东大学, 2017
[22] Shen L J. Process, microstructure and properties study on transient liquid phase bonding of Ti2A1Nb based alloy [D]. Nanchang: Nanchang University of Aeronautics, 2017
[22] 沈丽君. Ti2AlNb基合金TLP连接工艺及接头组织性能研究 [D]. 南昌: 南昌航空大学, 2017
[23] Zhao H Z, Lu B, Tong M, et al. Tensile behavior of Ti-22Al-24Nb-0.5Mo in the range 25~650℃ [J]. Mater. Sci. Eng., 2016, 679A: 455
[24] Wang W, Zeng W D, Yang J, et al. Microstructure and mechanical properties of the isothermally forged Ti-22Al-25Nb (at%) alloy [J]. Rare Met. Mater. Eng., 2016, 45: 1605
[24] 王伟, 曾卫东, 杨锦等. 等温锻造Ti-22Al-25Nb合金的显微组织与力学性能 [J]. 稀有金属材料与工程, 2016, 45: 1605
[25] Liang X B, Cheng Y J, Zhang J W, et al. Effects of heat treatment on microstructure and properties of β-forged Ti-22Al-25Nb alloy [J]. Chin. J. Nonferrous Met., 2010, 20(Suppl.1): 611
[25] 梁晓波, 程云君, 张建伟等. 热处理对β锻造Ti-22Al-25Nb合金组织和性能的影响 [J]. 中国有色金属学报, 2010, 20(增刊): 611
[26] Zhang Y, Liu J Y, Zhang J W. Microstructure transition and tensile properties of Ti-22Al-25Nb intermetallic alloy forged in β-phase zone [J]. Chin. J. Nonferrous Met., 2008, 18: 30
[26] 张艺, 刘俊友, 张建伟. β锻造Ti-22Al-25Nb合金的组织转变与拉伸性能 [J]. 中国有色金属学报, 2008, 18: 30
[27] Zhou W, Yao Z K, Ma Z. Effect of solution and aging treatment on microstructure of coarse-grain Ti-22Al-25Nb alloy [J]. Hot Work. Technol., 2018, 47(14): 208
[27] 周伟, 姚泽坤, 马震. 固溶和时效处理对粗晶Ti-22Al-25Nb合金显微组织的影响 [J]. 热加工工艺, 2018, 47(14): 208
[28] Wang S L, Zeng W D, Ma X, et al. Effect of solution temperature on microstructure of Ti-22Al-25Nb alloy [J]. Hot Work. Technol., 2009, 38(8): 106
[28] 王邵丽, 曾卫东, 马雄等. 固溶温度对Ti-22Al-25Nb合金微观组织的影响 [J]. 热加工工艺, 2009, 38(8): 106
[29] Boehlert C J, Majumdar B S, Seetharaman V, et al. The microstructural evolution in Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metall. Mater. Trans., 1999, 30A: 2305
[30] Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys [J]. Mater. Sci. Eng., 2000, 283A: 17
[31] Lee D G, Li C L, Lee Y T, et al. Effect of temperature on grain growth kinetics of high strength Ti-2Al-9.2Mo-2Fe alloy [J]. Thermochim. Acta, 2014, 586: 66
[32] Hall E O. The Lüders deformation of mild steel [J]. J. Photoch. Photobio., 1965, 13B: 534
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.