Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 191-197    DOI: 10.11901/1005.3093.2019.431
  研究论文 本期目录 | 过刊浏览 |
作为钠硫电池正极的碳约束NiS2纳米结构中钠离子的储运特性
周抒予,靳晓哲,刘佳,田瑞雪,吴爱民,黄昊()
大连理工大学材料科学与工程学院 辽宁省能源材料及器件重点实验室 大连 116024
Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries
ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao()
Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

周抒予,靳晓哲,刘佳,田瑞雪,吴爱民,黄昊. 作为钠硫电池正极的碳约束NiS2纳米结构中钠离子的储运特性[J]. 材料研究学报, 2020, 34(3): 191-197.
Shuyu ZHOU, Xiaozhe JIN, jia LIU, Ruixue TIAN, Aimin WU, Hao HUANG. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. Chinese Journal of Materials Research, 2020, 34(3): 191-197.

全文: PDF(3434 KB)   HTML
摘要: 

用电弧蒸发法和固相硫化法制备核壳结构的碳约束NiS2纳米材料(NiS2@C)。用X射线衍射(XRD)、透射电镜(TEM)和Raman等手段对其表征的结果表明,外部碳层有较多的缺陷,厚度为4 nm,NiS2的粒径为28 nm。作为Na-S电池正极材料的电化学性能:在电流密度为100 mA·g-1条件下NiS2@C正极材料4次循环后库伦效率保持在90%以上,循环500次后仍有106.8 mAh·g-1的可逆比容量,具有较高的循环稳定性。电化学阻抗分析结果表明,NiS2@C外部碳层的良好电子导电性和优异的结构稳定性加快了电极反应并维持着界面离子迁移的动力学平衡。

关键词 无机非金属材料钠硫电池正极材料电弧蒸发法碳约束纳米结构钠离子存储    
Abstract

Carbon-constraint NiS2 nanomaterials (NiS2@C) with core-shell structure were successfully synthesized by a combination method of arc evaporation and solid-state vulcanization. Characterization results of X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy show that there existed rich defects in the carbon shell. The thickness of the carbon shell was 4 nm, and the diameter of the NiS2 core was 28 nm. The electrochemical performance of NiS2@C electrode was measured as the cathode materials for Na-S batteries. The Coulombic efficiency of NiS2@C electrode remained above 90% after four cycles at a current density of 100 mA·g-1, and the reversible specific capacity of 106.8 mAh·g-1 remained after 500 cycles, which showed high cyclic stability. The electrochemical impedance analysis reveals that the electrode reactions were accelerated and the dynamic equilibrium of ion migration at the interface was maintained due to its good electronic conductivity and excellent structural stability by the constraint of the external carbon layer.

Key wordsinorganic nonmetallic materials    Na-S battery    cathode material    arc evaporation method    carbon-constraint nanostructure    sodium-ion storage
收稿日期: 2019-09-03     
ZTFLH:  O646,TM912.9  
基金资助:国家自然科学基金(51171033);中央高校基本科研业务费重点实验室专项经费(DUT19LAB29)
作者简介: 周抒予,男,1995年生,硕士生
图1  Ni前驱体在不同温度下硫化产物的XRD图谱、前驱体Ni、Ni@C以及电极活性材料NiS2、NiS2@C的XRD图谱和NiS2@C纳米材料的Raman图
图2  Ni@C和NiS2@C不同放大倍数的TEM照片
图3  NiS2和NiS2@C正极材料的循环伏安特性曲线
图4  NiS2和NiS2@C正极材料在100 mA·g-1电流密度下的循环性能和 NiS2@C正极材料在100 mA·g-1电流密度下的充放电曲线
图5  NiS2和NiS2@C正极材料在不同循环圈数下的Nyquist曲线以及拟合得到的等效电路模型
SampleCPE1/FCPE2/FR2/Ω·cm2R3/Ω·cm2IF/mA·cm-2
NiS2 initial4.34×10-5--189.50--2.24×10-5
1st cycle7.41×10-49.18×10-567.047.316.34×10-5
3rd cycle8.51×10-54.71×10-539.927.191.06×10-4
5th cycle7.59×10-53.43×10-524.387.031.74×10-4
10th cycle5.05×10-52.79×10-523.156.221.84×10-4
表1  NiS2正极材料的等效电路参数
SampleCPE1/FCPE2/FCPE3/FR2/Ω·cm2R3/Ω·cm2IF/mA·cm-2
NiS2@C initial5.14×10-51.06×10-4-392.30283.001.08×10-5
5th cycle4.07×10-59.16×10-47.75×10-5108.90128.103.90×10-5
10th cycle3.78×10-57.96×10-55.44×10-511.0475.703.85×10-4
20th cycle1.40×10-56.13×10-52.40×10-56.7971.216.26×10-4
50th cycle1.26×10-52.42×10-51.71×10-55.433.507.82×10-4
表2  NiS2@C正极材料的等效电路参数
[1] Xin S, Yin Y X, Guo Y G, et al. A high-energy room-temperature sodium-sulfur battery [J]. Adv. Mater., 2014, 26: 1261
[2] Hwang T H, Jung D S, Kim J S, et al. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature [J]. Nano Lett., 2013, 13: 4532
[3] Yang F C, Mousavie S M A, Oh T K, et al. Sodium-sulfur flow battery for low-cost electrical storage [J]. Adv. Energy Mater., 2018, 8: 1701991
[4] Okuyama R, Nakashima H, Sano T, et al. The effect of metal sulfides in the cathode on Na/S battery performance [J]. J. Power Sources, 2001, 93: 50
[5] Wang C L, Wang H, Hu X F, et al. Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries [J]. Adv. Energy Mater., 2019, 9: 1803251
[6] Lu Y, Li X N, Liang J W, et al. A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries [J]. Nanoscale, 2016, 8: 17616
[7] Wang H Q, Li S, Li D, et al. TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries [J]. Energy, 2014, 75: 597
[8] Du W Y, Xu Q J, Zhang Y Q, et al. Synthesis of hollow porous carbon microspheres and their application to room-temperature Na-S batteries [J]. Mater. Lett., 2018, 221: 66
[9] Park C W, Ahn J H, Ryu H S, et al. Room-temperature solid-state sodium/sulfur battery [J]. Electrochem. Solid-State Lett., 2006, 9: A123
[10] Ryu H, Kim T, Kim K, et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte [J]. J. Power Sources, 2011, 196: 5186
[11] Yang T T, Gao W, Guo B S, et al. A railway-like network electrode design for room temperature Na-S battery [J]. J. Mater. Chem., 2019, 7A: 150
[12] Yu X W, Manthiram A. Capacity enhancement and discharge me-chanisms of room-temperature sodium-sulfur batteries [J]. Chem. Electro. Chem, 2014, 1: 1275
[13] Tanibata N, Tsukasaki H, Deguchi M, et al. Characterization of sulfur nanocomposite electrodes containing phosphorus sul?de for high-capacity all-solid-state Na/S batteries [J]. Solid State Ionics, 2017, 311: 6
[14] Gu Z Y, Gao S, Huang H, et al. Electrochemical behavior of MWCNT-constraint SnS2 nanostructure as the anode for lithium-ion batteries [J]. Acta Phys. Chim. Sin., 2017, 33: 1197
[14] 谷泽宇, 高嵩, 黄昊等. 多壁纳米碳管约束二硫化锡作为锂离子电池负极的电化学行为 [J]. 物理化学学报, 2017, 33: 1197
[15] Wang T S, Hu P, Zhang C J, et al. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery [J]. ACS Appl. Mater. Interfaces, 2016, 8: 7811
[16] Bi R, Zeng C, Haung H W, et al. Metal-organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage [J]. J. Mater. Chem., 2018, 6A: 14077
[17] Yu X W, Manthiram A. Highly reversible room-temperature sulfur/long-chain sodium polysul?de batteries [J]. J. Phys. Chem. Lett., 2015, 5: 1943
[18] Kim L, Kim C, Kim H, et al. Initial discharge behavior of an ultra high loading 3D sulfur cathode for a room-temperature Na/S battery [J]. J. Nanosci. Nanotechnol., 2018, 18: 6524
[19] Chen Y M, Liang W F, Li S, et al. Nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur battery [J]. J. Mater. Chem., 2016, 4A: 12471
[20] Yu X W, Manthiram A. Ambient-temperature sodium-sulfur batteries with a sodiated na?on membrane and a carbon nano?ber-activated carbon composite electrode [J]. Adv. Energy Mater., 2015, 5: 1500350
[21] Kim J S, Ahn H J, Ryu H S, et al. The discharge properties of Na/Ni3S2 cell at ambient temperature [J]. J. Power Sources, 2008, 178: 852
[22] Zhang W M, Wu X L, Hu J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries [J]. Adv. Funct. Mater., 2008, 18: 3941
[23] Kim J S, Ahn H J, Kim I P, et al. The short-term cycling properties of Na/PVDF/S battery at ambient temperature [J]. J. Solid State Electrochem., 2008, 12: 861
[24] Bauer I, Kohl M, Althues H, et al. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes [J]. Chem. Commun., 2014, 50: 3208
[25] Wenzel S, Metelmann H, Rai? C, et al. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte [J]. J. Power Sources, 2013, 243: 758
[26] Jin X Z, Huang H, Wu A M, et al. Inverse capacity growth and pocket effect in SnS2 semi-filled carbon nanotube anode [J]. ACS Nano, 2018, 12: 8037
[27] Huang H, Gao S, Wu A M, et al. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation [J]. Nano Energy, 2017, 31: 74
[28] Yan Y, Yin Y X, Guo Y G, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodiumion batteries [J]. Adv. Energy Mater., 2014, 4: 1301584
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.