Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (2): 92-100    DOI: 10.11901/1005.3093.2019.443
  研究论文 本期目录 | 过刊浏览 |
两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能
秦艳利1,2,杨艳1,2,赵鹏羽1,2,刘振宇2,倪丁瑞2()
1. 沈阳理工大学理学院 沈阳 110159
2. 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method
QIN Yanli1,2,YANG Yan1,2,ZHAO Pengyu1,2,LIU Zhenyu2,NI Dingrui2()
1. School of Science, Shenyang Ligong University, Shenyang 110159, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

秦艳利,杨艳,赵鹏羽,刘振宇,倪丁瑞. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能[J]. 材料研究学报, 2020, 34(2): 92-100.
Yanli QIN, Yan YANG, Pengyu ZHAO, Zhenyu LIU, Dingrui NI. Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. Chinese Journal of Materials Research, 2020, 34(2): 92-100.

全文: PDF(3652 KB)   HTML
摘要: 

用两步水热法合成了BiOCl-RGO复合材料。先在乙二醇和去离子水的混合溶液中合成直径约为400 nm、由纳米片构成的微球状单一BiOCl样品,在此基础上引入RGO载体制备出BiOCl-RGO纳米复合材料。使用Raman光谱、XRD、XPS等手段表征样品的物相构成,用SEM和TEM观测其微观形貌,通过降解甲基橙评定样品的光催化性能。结果表明,水热温度显著影响复合材料的光催化性能,在140℃制备的BiOCl和石墨烯结合的样品具有最高的光催化性能。

关键词 复合材料氯氧化铋石墨烯水热法光催化性能    
Abstract

Composites of BiOCl-RGO were synthesized via a two-step hydrothermal method. Firstly plain BiOCl was synthesized in the mixed solution of ethylene glycol and deionized water, the acquired nanosphere-like BiOCl of about 400 nm in diameter composed of many nanosheets. Then the RGO carrier was deposited onto the plain BiOCl to prepare BiOCl-RGO nanocomposites. The composites were characterized by Raman spectroscopy, XRD, XPS, SEM and TEM. The photocatalytic property of the composites was evaluated by degrading methyl orange. The results show that the temperature of hydrothermal process significantly affects the photocatalytic property of the composites. The composite of BiOCl -graphene prepared at 140°C shows the highest photocatalytic performance.

Key wordscomposite    bismuth oxychloride (BiOCl)    graphene    hydrothermal method    photocatalytic performance
收稿日期: 2019-09-12     
ZTFLH:  O643  
基金资助:国家自然科学基金(51871215);辽宁省科技厅项目(1010145002220);辽宁省教育厅项目(LG2d60S)
作者简介: 秦艳利,女,1979年生,博士,副教授
图1  单一BiOCl与BiOCl-RGO复合粒子中BiOCl的拉曼光谱(a)和BiOCl-RGO复合粒子中RGO的拉曼光谱(b)
图2  所制备样品的XRD图谱
图3  样品B的Bi 4f、Cl 2p和BR-120的C 1s的XPS谱
图4  样品B的低倍和高倍SEM照片以及 BR-120的SEM照片
图5  样品B和 BR-120的TEM照片
图6  样品B、BR-120、BR-140和BR-160降解MO水溶液的吸收光谱图
图7  不同水热温度样品的光催化降解率和对应的降解率一级动力学图
SamplesK/min-1R/%
B0.031870.3%
BR-1600.042562.7%
BR-1400.044284.1%
BR-1200.042576.5%
表1  可见光照射下光催化剂降解MO的准一级速率常数和催化效率
图8  BiOCl-RGO降解MO的可能机制示意图
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37
[2] Du Y B, Zhang L, Ruan M, et al. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity [J]. Mater. Chem. Phys., 2018, 212: 69
[3] Kumaresan N, Ramamurthi K, Babu R R, et al. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity [J]. Appl. Surf. Sci., 2017, 418: 138
[4] Parthibavarman M, Karthik M, Prabhakaran S. Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material [J]. Vacuum, 2018, 155: 224
[5] Yang Y, Zhang C, Lai C, et al. BiOX (X=Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management [J]. Adv. Colloid Interface Sci., 2018, 254: 76
[6] Li H, Li J, Ai Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives [J]. Angew. Chem. Int. Ed., 2018, 57: 122
[7] Wang J Z, Li H L, Yan X R, et al. Synergistic enhancement of the visible-light photocatalytic activity of hierarchical 3D BiOClxBr1-x/graphene oxide heterojunctions for formaldehyde degradation at room temperature [J]. J. Alloys Compd., 2019, 795: 120
[8] Razavi-Khosroshahi H, Mohammadzadeh S, Hojamberdiev M, et al. BiVO4/BiOX (X=F, Cl, Br, I) heterojunctions for degrading organic dye under visible light [J]. Adv. Powder Technol., 2019, 30: 1290
[9] Zhang K L, Liu C M, Huang F Q, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalys [J]. Appl. Catal., 2006, 68B: 125
[10] Pare B, Sarwan B, Jonnalagadda S B. The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst [J]. J. Mol. Struct., 2012, 1007: 196
[11] Liu J Q, Wu Y C. Recent advances in the high performance BiOX(X=Cl, Br, I) based photo-catalysts [J]. J. Inorg. Mater., 2015, 30: 1009
[11] (刘家琴, 吴玉程. 基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究进展 [J]. 无机材料学报, 2015, 30: 1009)
[12] Sun D F, Li J P, Feng Z H, et al. Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity [J]. Catal. Commun., 2014, 51: 1
[13] Li Y Y, Liu J P, Jiang J, et al. UV-resistant superhydrophobic BiOCl nanoflake film by a room-temperature hydrolysis process [J]. Dalton Trans., 2011, 40: 6632
[14] Wang Y Q, Zhai M, Feng H W, et al. Research progress in bismuth oxyhalide compouds photocatalysts [J]. Chem. Ind. Eng. Pro., 2014, 33: 660
[14] (王燕琴, 瞿梦, 冯红武等. 卤氧化铋光催化剂的研究进展 [J]. 化工进展, 2014, 33: 660)
[15] Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres [J]. J. Phys. Chem., 2008, 112C: 747
[16] Yuan X Y. Progress in preparation of graphene [J]. J. Inorg. Mater., 2010, 26: 561
[16] (袁小亚. 石墨烯的制备研究进展 [J]. 无机材料学报, 2010, 26: 561)
[17] Liu J C, Liu L, Bai H W, et al. Gram-scale production of graphene oxide-TiO2 nanorod composites: towards high-activity photocatalytic materials [J]. Appl. Catal., 2011, 106B: 76
[18] Jiang J, Zhao K, Xiao X Y, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets [J]. J. Am. Chem. Soc., 2012, 134: 4473
[19] Yang H G, Wang H Y, Tian K, et al. Enhanced gas sensing properties to NO2 of SnO2/rGO nanocomposites synthesized by microwave-assisted gas-liquid interfacial method [J]. Ceram. Int., 2018, 44: 4900
[20] Song H J, Xia L X, Jia X H, et al. Polyhedral α-Fe2O3 crystals@RGO nanocomposites: Synthesis, characterization, and application in gas sensing [J]. J. Alloys Compd., 2018, 732: 191
[21] Wei L F, Yu C L. Research progress of graphene/semiconductor composite photocatalyts [J]. Nonferrous Met. Sci. Eng., 2013, 4(3): 34
[21] (魏龙福, 余长林. 石墨烯/半导体复合光催化剂的研究进展 [J]. 有色金属科学与工程, 2013, 4(3): 34)
[22] Fu Y S, Sun X Q, Wang X. BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation [J]. Mater. Chem. Phys., 2011, 131: 325
[23] Zhou F, Shi R, Zhu Y F. Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization [J]. J. Mol. Catal., 2011, 340A: 77
[24] Wang N N, Huang J F, Cao L Y, et al. Influence of temperature on oxidation resistance of carbon/carbon composites modified by a hydrothermal treatment [J]. J. Inorg. Mater., 2009, 24: 948
[24] (王妮娜, 黄剑锋, 曹丽云等. 反应温度对水热改性炭/炭复合材料抗氧化性能的影响 [J]. 无机材料学报, 2009, 24: 948)
[25] Hu Q, Qu W W, Yu M Y, et al. Photocatalytic performance of cellulose/CdS nanocomposites prepared by hydrothermal method [J]. Mater. Rev., 2016, 30(11): 20
[25] (胡琼, 曲雯雯, 余明远等. 水热法制备纤维素基CdS纳米复合材料及其光催化性能研究 [J]. 材料导报, 2016, 30(11): 20)
[26] Li X S, He W X, Zhang Y Q, et al. Effect of the hydrothemal temperature on Ni(OH)2/RGO composite’s structure and electrochemical performance [J]. J. Funct. Mater., 2016, 47: 8200
[26] (李兴盛, 赫文秀, 张永强等. 水热温度对Ni(OH)2/RGO复合材料结构及其电化学性能影响 [J]. 功能材料, 2016, 47: 8200)
[27] Xing B, Zhu W J, Zheng X P, et al. Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection [J]. Sens. Act., 2018, 265B: 403
[28] Cao S H, Guo C F, Lv Y, et al. A novel BiOCl film with flowerlike hierarchical structures and its optical properties [J]. Nanotechnology, 2009, 20: 275702
[29] Kang S, Pawar R C, Pyo Y, et al. Size-controlled BiOCl-RGO composites having enhanced photodegradative properties [J]. J. Exp. Nanosci., 2016, 11: 259
[30] Yu X, Shi J J, Feng L J, et al. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light [J]. Appl. Surf. Sci., 2017, 396: 1775
[31] Wang D H, Gao G Q, Zhang Y W, et al. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation [J]. Nanoscale, 2012, 4: 7780
[32] Wang Y, Liu X Y, Xu X, et al. Preparation and characterization of reduced graphene oxide/Fe3O4 nanocomposite by a facile in-situ deposition method for glucose biosensor applications [J]. Mater. Res. Bull., 2018, 101: 340
[33] Qin Y L, Zhao W W, Zhao P Y, et al. Synthesis of ZnS-TiO2and ZnS-TiO2/RGO photocatalytic nanocomposites and their photocatalytiv properties under visible light [J]. Trans. Shenyang Ligong. Univ., 2018, 37(2): 49
[33] (秦艳利, 赵文文, 赵鹏羽等. ZnS-TiO2与ZnS-TiO2/RGO光催化纳米复合材料的制备及其可见光降解性能研究 [J]. 沈阳理工大学学报, 2018, 37(2): 49)
[34] Soltani T, Entezari M H. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound [J]. Ultrason. Sonochem., 2013, 20: 1245
[35] Tu X M, Luo S L, Chen G X, et al. One-Pot Synthesis, characterization, and ehanced potocatalytic ativity of a BiOBr-graphene composite [J]. Chem. Eur. J., 2012, 18: 14359
[36] Liu Z, Xu W C, Fang J Z, et al. Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies [J]. Appl. Surf. Sci., 2012, 259: 441
[37] Liu Z, Robinson J T, Sun X M, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J]. J. Am. Chem. Soc., 2008, 130: 10876
[38] Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide [J]. Nano. Lett., 2010, 10: 577
[39] Liu H Q, Gu X N, Chen F, et al. Preparation of nano BiOCl microsphere and its fabrication machanism [J]. Chin. J. Catal, 2011, 32: 129
[39] (刘红旗, 顾晓娜, 陈锋等. BiOCl纳米片微球的制备及其形成机理 [J]. 催化学报, 2011, 32: 129)
[40] Wu Z M, Cai X, Zhang L, et al. Preparation of BiOCl - graphene composites and their photocatalytic activity [J]. Dye. Finis., 2015, 41(14): 1
[40] (吴志敏, 蔡 祥, 张丽等. 氯氧化铋-石墨烯复合材料的制备及光催化性能 [J]. 印染, 2015, 41(14): 1)
[41] Dong S Y, Pi Y Q, Li Q L, et al. Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: Mechanism and degradation pathways [J]. J. Alloys Compd., 2016, 663: 1
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.