|
|
金属间化合物的合成及其催化应用 |
侯志全,郭萌,刘雨溪,邓积光,戴洪兴( ) |
北京工业大学环境与能源工程学院 北京 100124 |
|
Synthesis of Intermetallic Compounds and Their Catalytic Applications |
HOU Zhiquan,GUO Meng,LIU Yuxi,DENG Jiguang,DAI Hongxing( ) |
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China |
引用本文:
侯志全,郭萌,刘雨溪,邓积光,戴洪兴. 金属间化合物的合成及其催化应用[J]. 材料研究学报, 2020, 34(2): 81-91.
Zhiquan HOU,
Meng GUO,
Yuxi LIU,
Jiguang DENG,
Hongxing DAI.
Synthesis of Intermetallic Compounds and Their Catalytic Applications[J]. Chinese Journal of Materials Research, 2020, 34(2): 81-91.
[1] | Gao F, Goodman D W. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles [J]. Chem. Soc. Rev., 2012, 41: 8009 | [2] | Zhang Q, Lee I, Joo J B, et al. Core-shell nanostructured catalysts [J]. Acc. Chem. Res., 2013, 46: 1816 | [3] | Wang X H, He B B, Hu Z Y, et al. Current advances in precious metal core-shell catalyst design [J]. Sci. Technol. Adv. Mater., 2014, 15: 043502 | [4] | Furukawa S, Komatsu T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis [J]. ACS Catal., 2017, 7: 735 | [5] | Komatsu T, Furukawa S. Intermetallic compound nanoparticles dispersed on the surface of oxide support as active and selective catalysts [J]. Mater. Trans., 2015, 56: 460 | [6] | Bonnemann H, Richards R M. Nanoscopic metal particles-synthetic methods and potential applications [J]. Eur. J. Inorg. Chem., 2001, 2001: 2455 | [7] | Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev., 2005, 105: 1025 | [8] | Rao C N R, Kulkarni G U, Thomas P J, et al. Metal nanoparticles and their assemblies [J]. Chem. Soc. Rev., 2000, 29: 27 | [9] | Chou N H, Schaak R. Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals [J]. J. Am. Chem. Soc., 2007, 129: 7339 | [10] | Alden L R, Roychowdhury C, Matsumoto F, et al. Synthesis, characterization, and electrocatalytic activity of PtPb nanoparticles prepared by two synthetic approaches [J]. Langmuir, 2006, 22: 10465 | [11] | Alden L, Han D, Matsumoto F, et al. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid [J]. Chem. Mater., 2006, 18: 5591 | [12] | Hou Z Q, Liu Y X, Deng J G, et al. Highly active and stable Pd-GaOx/Al2O3 catalysts derived from intermetallic Pd5Ga3 nanocrystals for methane combustion [J]. ChemCatChem, 2018, 10: 5637 | [13] | Sra A K, Schaak R E. Synthesis of atomically ordered AuCu and AuCu3 nanocrystals from bimetallic nanoparticle precursors [J]. J. Am. Chem. Soc., 2004, 126: 6667 | [14] | Li Y D, Li L Q, Liao H W, et al. Preparation of pure nickel, cobalt, nickel-cobalt and nickel-copper alloys by hydrothermal reduction [J]. J. Mater. Chem., 1999, 9: 2675 | [15] | Liu Y X, Liu X W, Feng Q C, et al. Intermetallic NixMy (M=Ga and Sn) nanocrystals: a non-precious metal catalyst for semi-hydrogenation of alkynes [J]. Adv. Mater., 2016, 28: 4747 | [16] | Wu J B, Zhang J L, Peng Z M, et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts [J]. J. Am. Chem. Soc., 2010, 132: 4984 | [17] | Stassi J P, Zgolicz P D, De Miguel S R, et al. Formation of different promoted metallic phases in PtFe and PtSn catalysts supported on carbonaceous materials used for selective hydrogenation [J]. J. Catal., 2013, 306: 11 | [18] | Furukawa S, Ehara K, Komatsu T. Unique reaction mechanism of preferential oxidation of CO over intermetallic Pt3Co catalysts: surface-OH-mediated formation of a bicarbonate intermediate [J]. Catal. Sci. Technol., 2016, 6: 1642 | [19] | Komatsu T, Takasaki M, Ozawa K, et al. PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen [J]. J. Phys. Chem. C, 2013, 117: 10483 | [20] | Furukawa S, Endo M, Komatsu T. Bifunctional catalytic system effective for oxidative dehydrogenation of 1-butene and n-butane using Pd-based intermetallic compounds [J]. ACS Catal., 2014, 4: 3533 | [21] | Ota A, Kunkes E L, Kasatkin I, et al. Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts [J]. J. Catal., 2012, 293: 27 | [22] | Onda A, Komatsu T, Yashima T. Characterization and catalytic properties of Ni-Sn intermetallic compounds in acetylene hydrogenation [J]. Phys. Chem. Chem. Phys., 2000, 2: 2999 | [23] | Endo N, Ito S, Tomishige K, et al. CO hydrogenation over a hydrogen-induced amorphization of intermetallic compound CeNi2 [J]. Catal. Today, 2011, 164: 293 | [24] | Endo N, Kameoka S, Tsai A P, et al. Hydrogen absorption properties of intermetallic compounds in the Au-Zr binary system [J]. J. Alloys Compd., 2009, 485: 588 | [25] | Chen X, Li M, Guan J C, et al. Nickel-silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene [J]. Ind. Eng. Chem. Res., 2012, 51: 3604 | [26] | Komatsu T, Tamura A. Pt3Co and PtCu intermetallic compounds: promising catalysts for preferential oxidation of CO in excess hydrogen [J]. J. Catal., 2008, 258: 306 | [27] | Komatsu T, Sou K, Ozawa K I. Preparation and catalytic properties of fine particles of Pt-Ge intermetallic compound formed inside the mesopores of MCM-41 [J]. J. Mol. Catal. A, 2010, 319: 71 | [28] | Sra A K, Ewers T D, Schaak R E. Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks [J]. Chem. Mater., 2005, 17: 758 | [29] | Murray C B, Sun S H, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. J. Res. Dev., 2001, 45: 47 | [30] | Cable R E, Schaak R E. Low-temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process [J]. Chem. Mater., 2005, 17: 6835 | [31] | Bauer J C, Chen X L, Liu Q S, et al. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis [J]. J. Mater. Chem., 2008, 18: 275 | [32] | Hermans S, Raja R, Thomas J M, et al. Solvent-free, low-temperature, selective hydrogenation of polyenes using a bimetallic nanoparticle Ru-Sn catalyst [J]. Angew. Chem. Int. Ed., 2001, 40: 1211 | [33] | Thomas J M, Johnson B F G, Raja R, et al. High-performance nanocatalysts for single-step hydrogenations [J]. Acc. Chem. Res., 2002, 36: 20 | [34] | Thomas J M, Raja R, Johnson B F G, et al. Bimetallic catalysts and their relevance to the hydrogen economy [J]. Ind. Eng. Chem. Res., 2003, 42: 1563 | [35] | Luo Y, Villaseca S A, Friedrich M, et al. Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga-Pd compounds [J]. J. Catal., 2016, 338: 265 | [36] | Kameoka S, Kimura T. A novel process for preparation of unsupported mesoporous intermetallic NiZn and PdZn catalysts [J]. Catal. Lett., 2009, 131: 219 | [37] | Pan H B, Wai C M. Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes [J]. New J. Chem., 2011, 35: 1649 | [38] | Anandan S, Grieser F, Ashokkumar M. Sonochemical synthesis of Au-Ag core-shell bimetallic nanoparticles [J]. J. Phys. Chem. C, 2008, 112: 15102 | [39] | Santra A K, Goodman D W. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures [J]. Electrochim. Acta, 2002, 47: 3595 | [40] | Over H, Muhler M. Catalytic CO oxidation over ruthenium-bridging the pressure gap [J]. Prog. Surf. Sci., 2003, 72: 3 | [41] | Min B K, Friend C M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation [J]. Chem. Rev., 2007, 107: 2709 | [42] | Freund H J, Meijer G, Scheffler M, et al. CO oxidation as a prototypical reaction for heterogeneous processes [J]. Angew. Chem. Int. Ed., 2011, 50: 10064 | [43] | Saravanan G, Abe H, Xu Y, et al. Pt3Ti nanoparticles: fine dispersion on SiO2 supports, enhanced catalytic CO oxidation, and chemical stability at elevated temperatures [J]. Langmuir, 2010, 26: 11446 | [44] | Liu X Y, Wang A Q, Li L, et al. Structural changes of Au-Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations [J]. J. Catal., 2011, 278: 288 | [45] | Xiao C X, Wang L L, Maligal-Ganesh R V, et al. Intermetallic NaAu2 as a heterogeneous catalyst for low-temperature CO oxidation [J]. J. Am. Chem. Soc., 2013, 135: 9592 | [46] | Baglin E G, Atkinson G B, Nicks L J. Methanol synthesis catalysts from thorium-copper intermetallics. Preparation and evaluation [J]. Ind. Eng. Chem. Prod. Res. Dev., 1981, 20: 87 | [47] | Ferreira A C, Gon?alves A P, Gasche T A, et al. Partial oxidation of me-thane over bimetallic copper-and nickel-actinide oxides (Th, U) [J]. J. Alloys Compd., 2010, 497: 249 | [48] | Sasikala R, Gupta N M, Kulshreshtha S K, et al. Carbon monoxide methanation over FeTi1+xintermetallics [J]. J. Catal., 1987, 107: 510 | [49] | Chen X, Jin J H, Sha G Y, et al. Silicon-nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation [J]. Catal. Sci. Technol., 2014, 4: 53 | [50] | Studt F, Sharafutdinov I, Abild-Pedersen F, et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol [J]. Nat. Chem., 2014, 6: 320 | [51] | Armbrüster M, Wowsnick G, Friedrich M, et al. Synthesis and catalytic properties of nanoparticulate intermetallic Ga-Pd compounds [J]. J. Am. Chem. Soc., 2011, 133: 9112 | [52] | Shao L D, Zhang W, Armbrüster M, et al. Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts [J]. Angew. Chem. Int. Ed., 2011, 50: 10231 | [53] | Zhou H R, Yang X F, Li L, et al. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene [J]. ACS Catal., 2016, 6: 1054 | [54] | Tew M W, Emerich H, Van Bokhoven J A. Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation [J]. J. Phys. Chem. C, 2011, 115: 8457 | [55] | Furukawa S, Komatsu T. Selective hydrogenation of functionalized alkynes to (E)-alkenes, using ordered alloys as catalysts [J]. ACS Catal., 2016, 6: 2121 | [56] | Neumann M, Teschner D, Knop-Gericke A, et al. Controlled synthesis and catalytic properties of supported In-Pd intermetallic compounds [J]. J. Catal., 2016, 340: 49 | [57] | Friedrich M, Teschner D, Knop-Gericke A, et al. Surface and subsurface dynamics of the intermetallic compound ZnNi in methanol steam reforming [J]. J. Phys. Chem. C, 2012, 116: 14930 | [58] | Llorca J, Delapiscina P R, Fierro J L G, et al. Influence of metallic precursors on the preparation of silica-supported PtSn alloy: characterization and reactivity in the catalytic activation of CO2 [J]. J. Catal., 1995, 156: 139 | [59] | Bollmann L, Ratts J L, Joshi A M, et al. Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts [J]. J. Catal., 2008, 257: 43 | [60] | Lebarbier V, Dagle R, Datye A, et al. The effect of PdZn particle size on reverse-water-gas-shift reaction [J]. Appl. Catal. A, 2010, 379: 3 | [61] | Arana J, Homs N, Sales J, et al. CO/CO2 hydrogenation and ethylene hydroformylation over silica-supported PdZn catalysts [J]. Catal. Lett., 2001, 72: 183 | [62] | Furukawa S, Tsuchiya A, Kojima Y, et al. Raney-type Ru-La catalysts prepared from a Ru-La-Al ternary alloy: enhanced activity in ammonia decomposition [J]. Chem. Lett., 2016, 45: 158 | [63] | Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J]. Nat. Mater., 2007, 6: 241 | [64] | Furukawa S, Ehara K, Ozawa K, et al. A study on the hydrogen activation properties of Ni-based intermetallics: a relationship between reactivity and the electronic state [J]. Chem. Chem. Phys., 2014, 16: 19828 | [65] | Prinz J, Gaspari R, St?ckl Q S, et al. Ensemble effect evidenced by CO adsorption on the 3-fold PdGa surfaces [J]. J. Phys. Chem. C, 2014, 118: 12260 | [66] | Kim D, Xie C L, Becknell N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles [J]. J. Am. Chem. Soc., 2017, 139: 8329 | [67] | Furukawa S, Ochi K, Luo H, et al. Selective stereochemical catalysis controlled by specific atomic arrangement of ordered alloys [J]. ChemCatChem, 2015, 7: 3472 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|