Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (8): 581-589    DOI: 10.11901/1005.3093.2022.293
  研究论文 本期目录 | 过刊浏览 |
钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能
刘瑞峰1(), 仙运昌2, 赵瑞2, 周印梅2, 王文先3
1.太原理工大学航空航天学院 太原 030024
2.山西阳煤化工机械(集团)有限公司 煤化工压力容器山西省重点实验室 太原 030032
3.太原理工大学材料科学与工程学院 太原 030024
Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering
LIU Ruifeng1(), XIAN Yunchang2, ZHAO Rui2, ZHOU Yinmei2, WANG Wenxian3
1.Taiyuan University of Technology, College of Aeronautics and Astronautics, Taiyuan 030024, China
2.Shanxi Yangmei Chemical Machinery (Group) Co. Ltd., Shanxi Key Laboratory of Coal Chemical Pressure Vessels, Taiyuan 030032, China
3.Taiyuan University of Technology, College of Materials Science and Engineering, Taiyuan 030024, China
引用本文:

刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
Ruifeng LIU, Yunchang XIAN, Rui ZHAO, Yinmei ZHOU, Wenxian WANG. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. Chinese Journal of Materials Research, 2023, 37(8): 581-589.

全文: PDF(11299 KB)   HTML
摘要: 

用放电等离子烧结技术(SPS)制备钛合金/不锈钢复合板,模拟计算连接界面处的电流密度场、温度场和应力场并分析了复合材料的微观组织、界面微纳力学行为和拉伸性能。结果表明:在高能脉冲电流的作用下发生短时尖端放电使连接界面处的温度瞬间升高,连接界面相对平直并发生了明显的Ti、Fe、Cr原子扩散,在界面处生成了少量的TiFe、TiFe2和FeCr等金属间化合物。结合界面处金属间化合物的硬度达到3.557 GPa,远高于两侧金属基体(钛合金2.943 GPa,不锈钢2.717 GPa)的硬度。钛合金/不锈钢复合板的拉伸强度可达385.7 MPa,分别为钛合金母材和不锈钢母材的72%和80%。在拉伸过程中,不锈钢板解理断裂后钛合金板承载直至发生典型的韧性断裂。

关键词 复合材料放电等离子烧结技术尖端放电连接界面断裂机制    
Abstract

Composite plates of titanium alloy/stainless steel were prepared by spark plasma sintering (SPS), and their microstructure, micro-nano mechanical behavior and tensile properties were investigated. Results show that the temperature of the interface of titanium alloy/stainless steel rises fast owing to the short time spark discharge under the action of high energy pulse current. The interface is relatively flat, while inter-diffusion of Ti, Fe and Cr atoms occurs obviously. A small number of intermetallic compounds TiFe, TiFe2 and FeCr formed at the interface. The hardness of the zone with brittle intermetallic compounds reached 3.5578 GPa, which is much higher than that of metal matrix on both sides (Ti-2.943 GPa, Steel-2.717 GPa). The tensile strength of the titanium alloy/stainless steel composite is 387.5 MPa, which is 72% and 79% of the base material of titanium alloy and stainless steel respectively. During the tensile process, cleavage fracture first occurs on the stainless-steel side, while the titanium alloy side continues to bear the load until the typical ductile fracture occurs.

Key wordscomposite    spark plasma sintering    tip spark    bonding interface    fracture mechanism
收稿日期: 2022-05-25     
ZTFLH:  TG146.2+1  
基金资助:国家重点研发计划(2017YFB0602605);山西省科技重大专项(MC2016-01);山西省科技重大专项(MC2016-02);国家自然科学基金(52075360);山西省应用基础研究项目(20210302124653)
通讯作者: 刘瑞峰,liuruifeng@tyut.edu.cn,研究方向为先进材料连接及界面行为
Corresponding author: LIU Reifeng, Tel: 15735161357, E-mail: liuruifeng@tyut.edu.cn
作者简介: 刘瑞峰,男,1991年生,博士
Chemical compositionCrTiCFe
Content21.00.30.01Bal.
表1  443铁素体不锈钢的化学成分
ElementAlMnFeCTi
Content1.0~2.50.7~2.0≤0.30≤0.10Bal.
表2  TC1钛合金的化学成分
图1  SPS连接示意图和工艺曲线
图2  电流密度分布云图
图3  温度分布云图
图4  残余应力分布云图
Density / kg·m-3

Thermal conductivity

/ W·(m·K)-1

Specific heat capacity / J·(kg·K)-1Coefficient of linear expansion / KPoisson's ratio
7678174801.1×10-50.28
表3  443铁素体不锈钢的热物理参数
Density / kg·m-3

Thermal conductivity

/ W∙(m∙K)-1

Specific heat capacity

/ J∙(kg∙K) -1

Coefficient of linear expansion / KPoisson's ratio
4550215408.7×10-60.32
表4  TC1钛合金的热物理参数
图 5  用放电等离子烧结技术连接的钛合金和不锈钢结合界面的微观形貌和面扫描图
图6  钛合金/不锈钢连接界面的EDS分析
TiCrFe
Point A89.501.269.24
Point B85.611.7714.73
Point C4.4215.3880.20
Point D1.8416.2481.92
Point E56.844.8438.32
Point F61.535.8632.62
表5  EDS点扫描结果
Test 1Test 2Test 3Average
Point B2.9422.8932.9942.943
Point E3.1523.2013.1753.176
Point F3.5013.6113.5593.557
Point C2.6902.7232.7382.717
表6  纳米压痕测试结果
图7  SPS连接钛合金和不锈钢结合界面的EBSD图
图8  钛合金/不锈钢连接界面的XRD谱和钛-铁二元相图
图9  钛合金/不锈钢连接界面的纳米压痕测试结果
图10  钛合金/不锈钢复合板的拉伸曲线
图11  钛合金/不锈钢复合板的拉伸断口形貌
1 Song T F, Jiang X S, Mo D F, et al. A survey on dissimilar welding of stainless steel and titanium alloy [J]. Mater. Rev., 2015, 29(11): 81
1 宋庭丰, 蒋小松, 莫德锋 等. 不锈钢和钛合金异种金属焊接研究进展 [J]. 材料导报, 2015, 29(11): 81
2 Ananthakumar K, Kumaran S. Plasma assisted diffusion joining of CP-titanium-304L stainless steel: Attributes of temperature and time [J]. Mater. Today: Proc., 2020, 33: 3174
3 Wang Z J, Song H, Cai S P, et al. Research advancements on self-healing of cracks and evolution of microstructures of titanium alloy sheets induced by electropulsing [J]. J. Plasticity Eng., 2019, 26(2): 1
3 王忠金, 宋 辉, 蔡舒鹏 等. 脉冲电流诱导钛合金板材裂纹愈合与组织演变研究进展 [J]. 塑性工程学报, 2019, 26(2): 1
4 Luo Z A, Xie G M, Wang G L, et al. Effect of interfacial microstructure on mechanical properties of vacuum rolling clad pure titanium/high strength low alloy steel [J]. Chin. J. Mater. Res., 2013, 27(6): 569
4 骆宗安, 谢广明, 王光磊 等. 界面微观组织对真空轧制复合纯钛/低合金高强钢界面力学性能的影响 [J]. 材料研究学报, 2013, 27(6): 569
5 Feng J C. Research progress on dissimilar materials joining [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43(2): 626413
5 冯吉才. 异种材料连接研究进展 [J]. 航空学报, 2022, 43(2): 626413
doi: 10.7527/S1000-6893.2021.26413
6 Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer [J]. Mater. Sci. Eng., 2017, 695A: 120-125.
7 Yan W D, Sun X F, Zhang Y, et al. Research status and prospect of welding technology for Ti/steel laminated composite plate [J]. Nonferrous Met. Eng., 2021, 11(4): 33
7 闫婉迪, 孙新丰, 张 岩 等. 钛/钢层状复合板焊接技术的现状与展望 [J]. 有色金属工程, 2021, 11(4): 33
8 Luo Z A, Yang D H, Xie G M, et al. Production process and performance of titanium-steel vacuum roll-cladding plates [J]. J. Iron Steel Res., 2019, 31(2): 213
8 骆宗安, 杨德翰, 谢广明 等. 真空制坯热轧钛/钢复合板工艺及性能 [J]. 钢铁研究学报, 2019, 31(2): 213
9 Chen C. Investigation on dissimilar materials bonding process of TC4 titanium alloy and 316L stainless steel with selective laser melting [D]. Beijing: Beijing Institute of Technology, 2017
9 陈 成. TC4钛合金与316L不锈钢异质材料选区激光熔化连接研究 [D]. 北京: 北京理工大学, 2017
10 Zhou R L, Guo D L, Zhang Y Y. Effects of technological parameters of phase transformation diffusion bonding on joint strength of Ti/stainless steel [J]. Chin. J. Nonferrous Met., 2002, 12(4): 663
10 周荣林, 郭德伦, 张银根. 相变扩散连接工艺参数对钛与不锈钢接头强度的影响 [J]. 中国有色金属学报, 2002, 12(4): 663
11 Gao W W. Study on microstructure and properties of TA2/S316 diffusion welding joints [D]. Ji'nan: Shandong University, 2020
11 高旺旺. TA2/S316扩散焊接头组织与性能研究 [D]. 济南: 山东大学, 2020
12 Miriyev A, Stern A, Tuval E, et al. Titanium to steel joining by spark plasma sintering (SPS) technology [J]. J. Mater. Process. Technol., 2013, 213: 161
doi: 10.1016/j.jmatprotec.2012.09.017
13 Umeda J, Imai H, Takahashi M, et al. Bonding mechanism of Ti/AZ80 dissimilar materials fabricated by spark plasma sintering [J]. J. Multidiscip. Eng. Sci. Stud., 2016, 2(10): 1009
14 Zhao K, Liu Y, Huang L, et al. Diffusion bonding of Ti-45Al-7Nb-0.3W alloy by spark plasma sintering [J]. J. Mater. Process. Technol., 2016, 230: 272
doi: 10.1016/j.jmatprotec.2015.11.030
15 Dong P, Wang Z, Wang W X, et al. Understanding the spark plasma sintering from the view of materials joining [J]. Scr. Mater., 2016, 123: 118
doi: 10.1016/j.scriptamat.2016.06.014
16 Saleemi M, Toprak M S, Fiameni S, et al. Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si) [J]. J. Mater. Sci., 2013, 48: 1940
doi: 10.1007/s10853-012-6959-0
17 Liu R F, Wang W X, Chen H S, et al. Densification of pure magnesium by spark plasma sintering-discussion of sintering mechanism [J]. Adv. Powder Technol., 2019, 30: 2649
doi: 10.1016/j.apt.2019.08.012
18 Chen Y F, Zhang Z L, Qiu R F. Microstructure and property of diffusion welded titanium alloy/stainless steel joint with Nb and Cu as composite interlayer [J]. Mater. Mech. Eng., 2018, 42(10): 77
doi: 10.11973/jxgccl201810015
18 陈一帆, 张占领, 邱然锋. 以铌+铜为复合中间层扩散焊接钛合金/不锈钢接头的组织与性能 [J]. 机械工程材料, 2018, 42(10): 77
doi: 10.11973/jxgccl201810015
19 Kurt B, Orhan N, Evin E, et al. Diffusion bonding between Ti-6Al-4V alloy and ferritic stainless steel [J]. Mater. Lett., 2007, 61(8-9): 1747
doi: 10.1016/j.matlet.2006.07.123
20 Miriyev A, Stern A, Tuval E, et al. Titanium to steel joining by spark plasma sintering (SPS) technology [J]. J. Mater. Process. Technol., 2013, 213: 161
doi: 10.1016/j.jmatprotec.2012.09.017
21 Norouzi E, Shamanian M, Atapour M, et al. Diffusion brazing of Ti-6Al-4V and AISI 304: an EBSD study and mechanical properties [J]. J. Mater. Sci., 2017, 52: 12467
doi: 10.1007/s10853-017-1376-z
22 Ananthakumar K, Kumaran S. Plasma assisted diffusion joining of CP-titanium-304L stainless steel: Attributes of temperature and time [J]. Mater. Today: Proc., 2020, 33: 3174
23 Liu R F. Study on the pulse current preparation mechanism and processing properties of B4C/6061Al composites [D]. Taiyuan: Taiyuan University of Technology, 2020
23 刘瑞峰. B4C/6061Al复合材料脉冲电流制备机理及其加工性能研究 [D]. 太原: 太原理工大学, 2020
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[4] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[5] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[7] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[10] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[11] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[12] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[13] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.