|
|
两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 |
秦艳利1,2,杨艳1,2,赵鹏羽1,2,刘振宇2,倪丁瑞2( ) |
1. 沈阳理工大学理学院 沈阳 110159 2. 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method |
QIN Yanli1,2,YANG Yan1,2,ZHAO Pengyu1,2,LIU Zhenyu2,NI Dingrui2( ) |
1. School of Science, Shenyang Ligong University, Shenyang 110159, China 2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
秦艳利,杨艳,赵鹏羽,刘振宇,倪丁瑞. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能[J]. 材料研究学报, 2020, 34(2): 92-100.
Yanli QIN,
Yan YANG,
Pengyu ZHAO,
Zhenyu LIU,
Dingrui NI.
Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. Chinese Journal of Materials Research, 2020, 34(2): 92-100.
[1] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37 | [2] | Du Y B, Zhang L, Ruan M, et al. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity [J]. Mater. Chem. Phys., 2018, 212: 69 | [3] | Kumaresan N, Ramamurthi K, Babu R R, et al. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity [J]. Appl. Surf. Sci., 2017, 418: 138 | [4] | Parthibavarman M, Karthik M, Prabhakaran S. Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material [J]. Vacuum, 2018, 155: 224 | [5] | Yang Y, Zhang C, Lai C, et al. BiOX (X=Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management [J]. Adv. Colloid Interface Sci., 2018, 254: 76 | [6] | Li H, Li J, Ai Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives [J]. Angew. Chem. Int. Ed., 2018, 57: 122 | [7] | Wang J Z, Li H L, Yan X R, et al. Synergistic enhancement of the visible-light photocatalytic activity of hierarchical 3D BiOClxBr1-x/graphene oxide heterojunctions for formaldehyde degradation at room temperature [J]. J. Alloys Compd., 2019, 795: 120 | [8] | Razavi-Khosroshahi H, Mohammadzadeh S, Hojamberdiev M, et al. BiVO4/BiOX (X=F, Cl, Br, I) heterojunctions for degrading organic dye under visible light [J]. Adv. Powder Technol., 2019, 30: 1290 | [9] | Zhang K L, Liu C M, Huang F Q, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalys [J]. Appl. Catal., 2006, 68B: 125 | [10] | Pare B, Sarwan B, Jonnalagadda S B. The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst [J]. J. Mol. Struct., 2012, 1007: 196 | [11] | Liu J Q, Wu Y C. Recent advances in the high performance BiOX(X=Cl, Br, I) based photo-catalysts [J]. J. Inorg. Mater., 2015, 30: 1009 | [11] | (刘家琴, 吴玉程. 基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究进展 [J]. 无机材料学报, 2015, 30: 1009) | [12] | Sun D F, Li J P, Feng Z H, et al. Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity [J]. Catal. Commun., 2014, 51: 1 | [13] | Li Y Y, Liu J P, Jiang J, et al. UV-resistant superhydrophobic BiOCl nanoflake film by a room-temperature hydrolysis process [J]. Dalton Trans., 2011, 40: 6632 | [14] | Wang Y Q, Zhai M, Feng H W, et al. Research progress in bismuth oxyhalide compouds photocatalysts [J]. Chem. Ind. Eng. Pro., 2014, 33: 660 | [14] | (王燕琴, 瞿梦, 冯红武等. 卤氧化铋光催化剂的研究进展 [J]. 化工进展, 2014, 33: 660) | [15] | Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres [J]. J. Phys. Chem., 2008, 112C: 747 | [16] | Yuan X Y. Progress in preparation of graphene [J]. J. Inorg. Mater., 2010, 26: 561 | [16] | (袁小亚. 石墨烯的制备研究进展 [J]. 无机材料学报, 2010, 26: 561) | [17] | Liu J C, Liu L, Bai H W, et al. Gram-scale production of graphene oxide-TiO2 nanorod composites: towards high-activity photocatalytic materials [J]. Appl. Catal., 2011, 106B: 76 | [18] | Jiang J, Zhao K, Xiao X Y, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets [J]. J. Am. Chem. Soc., 2012, 134: 4473 | [19] | Yang H G, Wang H Y, Tian K, et al. Enhanced gas sensing properties to NO2 of SnO2/rGO nanocomposites synthesized by microwave-assisted gas-liquid interfacial method [J]. Ceram. Int., 2018, 44: 4900 | [20] | Song H J, Xia L X, Jia X H, et al. Polyhedral α-Fe2O3 crystals@RGO nanocomposites: Synthesis, characterization, and application in gas sensing [J]. J. Alloys Compd., 2018, 732: 191 | [21] | Wei L F, Yu C L. Research progress of graphene/semiconductor composite photocatalyts [J]. Nonferrous Met. Sci. Eng., 2013, 4(3): 34 | [21] | (魏龙福, 余长林. 石墨烯/半导体复合光催化剂的研究进展 [J]. 有色金属科学与工程, 2013, 4(3): 34) | [22] | Fu Y S, Sun X Q, Wang X. BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation [J]. Mater. Chem. Phys., 2011, 131: 325 | [23] | Zhou F, Shi R, Zhu Y F. Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization [J]. J. Mol. Catal., 2011, 340A: 77 | [24] | Wang N N, Huang J F, Cao L Y, et al. Influence of temperature on oxidation resistance of carbon/carbon composites modified by a hydrothermal treatment [J]. J. Inorg. Mater., 2009, 24: 948 | [24] | (王妮娜, 黄剑锋, 曹丽云等. 反应温度对水热改性炭/炭复合材料抗氧化性能的影响 [J]. 无机材料学报, 2009, 24: 948) | [25] | Hu Q, Qu W W, Yu M Y, et al. Photocatalytic performance of cellulose/CdS nanocomposites prepared by hydrothermal method [J]. Mater. Rev., 2016, 30(11): 20 | [25] | (胡琼, 曲雯雯, 余明远等. 水热法制备纤维素基CdS纳米复合材料及其光催化性能研究 [J]. 材料导报, 2016, 30(11): 20) | [26] | Li X S, He W X, Zhang Y Q, et al. Effect of the hydrothemal temperature on Ni(OH)2/RGO composite’s structure and electrochemical performance [J]. J. Funct. Mater., 2016, 47: 8200 | [26] | (李兴盛, 赫文秀, 张永强等. 水热温度对Ni(OH)2/RGO复合材料结构及其电化学性能影响 [J]. 功能材料, 2016, 47: 8200) | [27] | Xing B, Zhu W J, Zheng X P, et al. Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection [J]. Sens. Act., 2018, 265B: 403 | [28] | Cao S H, Guo C F, Lv Y, et al. A novel BiOCl film with flowerlike hierarchical structures and its optical properties [J]. Nanotechnology, 2009, 20: 275702 | [29] | Kang S, Pawar R C, Pyo Y, et al. Size-controlled BiOCl-RGO composites having enhanced photodegradative properties [J]. J. Exp. Nanosci., 2016, 11: 259 | [30] | Yu X, Shi J J, Feng L J, et al. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light [J]. Appl. Surf. Sci., 2017, 396: 1775 | [31] | Wang D H, Gao G Q, Zhang Y W, et al. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation [J]. Nanoscale, 2012, 4: 7780 | [32] | Wang Y, Liu X Y, Xu X, et al. Preparation and characterization of reduced graphene oxide/Fe3O4 nanocomposite by a facile in-situ deposition method for glucose biosensor applications [J]. Mater. Res. Bull., 2018, 101: 340 | [33] | Qin Y L, Zhao W W, Zhao P Y, et al. Synthesis of ZnS-TiO2and ZnS-TiO2/RGO photocatalytic nanocomposites and their photocatalytiv properties under visible light [J]. Trans. Shenyang Ligong. Univ., 2018, 37(2): 49 | [33] | (秦艳利, 赵文文, 赵鹏羽等. ZnS-TiO2与ZnS-TiO2/RGO光催化纳米复合材料的制备及其可见光降解性能研究 [J]. 沈阳理工大学学报, 2018, 37(2): 49) | [34] | Soltani T, Entezari M H. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound [J]. Ultrason. Sonochem., 2013, 20: 1245 | [35] | Tu X M, Luo S L, Chen G X, et al. One-Pot Synthesis, characterization, and ehanced potocatalytic ativity of a BiOBr-graphene composite [J]. Chem. Eur. J., 2012, 18: 14359 | [36] | Liu Z, Xu W C, Fang J Z, et al. Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies [J]. Appl. Surf. Sci., 2012, 259: 441 | [37] | Liu Z, Robinson J T, Sun X M, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J]. J. Am. Chem. Soc., 2008, 130: 10876 | [38] | Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide [J]. Nano. Lett., 2010, 10: 577 | [39] | Liu H Q, Gu X N, Chen F, et al. Preparation of nano BiOCl microsphere and its fabrication machanism [J]. Chin. J. Catal, 2011, 32: 129 | [39] | (刘红旗, 顾晓娜, 陈锋等. BiOCl纳米片微球的制备及其形成机理 [J]. 催化学报, 2011, 32: 129) | [40] | Wu Z M, Cai X, Zhang L, et al. Preparation of BiOCl - graphene composites and their photocatalytic activity [J]. Dye. Finis., 2015, 41(14): 1 | [40] | (吴志敏, 蔡 祥, 张丽等. 氯氧化铋-石墨烯复合材料的制备及光催化性能 [J]. 印染, 2015, 41(14): 1) | [41] | Dong S Y, Pi Y Q, Li Q L, et al. Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: Mechanism and degradation pathways [J]. J. Alloys Compd., 2016, 663: 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|