|
|
Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能 |
王伟1( ), 解泽磊1, 屈怡珅2, 常文娟1, 彭怡晴1, 金杰3, 王快社1 |
1.西安建筑科技大学冶金工程学院 陕西 710055 2.北京交通大学经济管理学院 北京 100044 3.北京交通大学机械与电子控制工程学院 北京 100044 |
|
Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives |
WANG Wei1( ), XIE Zelei1, QU Yishen2, CHANG Wenjuan1, PENG Yiqing1, JIN Jie3, WANG Kuaishe1 |
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2.School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China 3.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China |
引用本文:
王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
Wei WANG,
Zelei XIE,
Yishen QU,
Wenjuan CHANG,
Yiqing PENG,
Jie JIN,
Kuaishe WANG.
Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. Chinese Journal of Materials Research, 2023, 37(7): 543-553.
1 |
Li C H, Zhu M, Wang N, et al. Application of titanium alloy in airplane [J]. Chinese Journal of Rare Metals, 2009, 33(1): 84
|
1 |
李重河, 朱 明, 王 宁 等. 钛合金在飞机上的应用 [J]. 稀有金属, 2009, 33(01): 84
|
2 |
Niinomi M. Recent progress in research and development of metallic structural biomaterials with mainly focusing on mechanical biocompatibility [J]. Materials Transactions, 2018, 59(1): 1
doi: 10.2320/matertrans.M2017180
|
3 |
Liu Q M, Xu J K, Yu H D. Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V [J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 2917
doi: 10.1007/s00170-020-05593-3
|
4 |
Zhang H, Qi X. Super low friction characteristics initiated by running-in process inwater-based lubricant for Ti-alloy [J]. Chinese Journal of Materials Research, 2021, 35(5): 349
|
4 |
张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性 [J]. 材料研究学报, 2021, 35(05): 349
|
5 |
Cheng J, Li F, Qiao Z H, et al. The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics [J]. Materials & Design, 2015, 84: 245
|
6 |
Sun J, Meng Y. Lubrication and repair of metal surface by nano-fluid [J]. Surface Technology, 2019, 48(11): 1
|
6 |
孙建林, 孟亚男. 纳米加工液对金属表面的润滑与修复 [J]. 表面技术, 2019, 48(11): 1
|
7 |
Xu Y F, Sun K Q, Yu J Y, et al. Tribological properties of TiO2/BP nanocomposites as lubricant additives for titanium alloy tribopairs [J]. Tribology Transactions, 2022, 65(2): 270
doi: 10.1080/10402004.2021.2007317
|
8 |
Hegab H, Kishawy H A, Gadallah M H, et al. On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication [J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 1593
doi: 10.1007/s00170-018-2028-4
|
9 |
Hou S X, Li Z G, Ren C X, et al. Research progress of graphene as additives in lubrication [J]. Applied Chemical Industry, 2021, 50(6): 1683
|
9 |
侯锁霞, 李兆刚, 任呈祥 等. 石墨烯添加剂润滑性能的研究进展 [J]. 应用化工, 2021, 50(06): 1683
|
10 |
Ye X Y, Ma L M, Yang Z G, et al. Covalent functionalization of fluorinated graphene and subsequent application as water-based lubricant additive [J]. Acs Applied Materials & Interfaces, 2016, 8(11): 7483
|
11 |
Li M, Yu T B, Zhang R C, et al. MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid [J]. Int. J. Adv. Manuf. Technol., 2018, 99(5-8): 1735
doi: 10.1007/s00170-018-2576-7
|
12 |
Kong N, Zhang J, Zhang J, et al. Chemical- and mechanical-induced lubrication mechanisms during hot rolling of titanium alloys using a mixed graphene-incorporating lubricant [J]. Nanomaterials, 2020, 10(4): 665
doi: 10.3390/nano10040665
|
13 |
Ibrahim A M M, Li W, Xiao H, et al. Energy conservation and environmental sustainability during grinding operation of Ti-6Al-4V alloys via eco-friendly oil/graphene nano additive and Minimum quantity lubrication [J]. Tribology International, 2020, 150: 106387
doi: 10.1016/j.triboint.2020.106387
|
14 |
Fu T, Ma S H, Zhou F, et al. Progress of functionalized graphene nanomaterials and their applications as water-based lubricating additives [J]. Tribology, 2022, 42(2): 408
|
14 |
付 甜, 麻拴红, 周 峰 等. 石墨烯的功能化改性及其作为水基润滑添加剂的应用进展 [J]. 摩擦学学报, 2022, 42(02): 408
|
15 |
Wang Y, Hu Y, Zhao H, et al. Research progress of graphene as additives of water-based lubricants [J]. Materials Review, 2021, 35(10A): 19055
|
16 |
Meng Y, Su F, Chen Y. Au/Graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive [J]. ACS. Appl. Mater. Interfaces., 2017, 9(45): 39549
doi: 10.1021/acsami.7b10276
|
17 |
Meng Y, Su F, Chen Y J C E J. Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear [J]. Chemical Engineering Journal, 2015, 281: 11
doi: 10.1016/j.cej.2015.06.073
|
18 |
Wang L, Gong P, Li W, et al. Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear [J]. Tribology International, 2020, 146: 106228
doi: 10.1016/j.triboint.2020.106228
|
19 |
Xie H M, Jiang B, He J J, et al. Effect of SiO2 nanoparticles as lubricating oil additives on the cold-rolling of AZ31 magnesium alloy sheet [J]. Materials Research Innovations, 2015, 19(suppl.4) : S127
|
20 |
Li X, Chen Y, Mo S P, et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid [J]. Thermochimica Acta, 2014, 595: 6
doi: 10.1016/j.tca.2014.09.006
|
21 |
Wang N, Wang H, Ren J, et al. Novel additive of PTFE@SiO2 Core-Shell nanoparticles with superior water lubricating properties [J]. Materials & Design, 2020: 109069
|
22 |
Zhang C L, He Y, Xu Z H, et al. Fabrication of Fe3O4@SiO2 nanocomposites to enhance anticorrosion performance of epoxy coatings [J]. Polymers for Advanced Technologies, 2016, 27(6): 740
doi: 10.1002/pat.3707
|
23 |
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science, 1968, 26(1): 62
doi: 10.1016/0021-9797(68)90272-5
|
24 |
Xiao H P, Guo D, Liu S H, et al. Contact ratio of rough surfaces with multiple asperities in mixed lubrication at high pressures [J]. Appl. Surf. Sci., 2012, 258(8): 3888
doi: 10.1016/j.apsusc.2011.12.053
|
25 |
Wu C H, Zhang L C, Qu P L, et al. Characterization of interface stresses and lubrication of rough elastic surfaces under ball-on-disc rolling [J]. Proc. Inst. Mech. Eng. Part. J-J. Eng. Tribol., 2017, 231(12): 1552
doi: 10.1177/1350650117700793
|
26 |
Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen [J]. Carbon, 2013, 59: 167
doi: 10.1016/j.carbon.2013.03.006
|
27 |
Mercado-Solis R D, Mata-Maldonado J G, Quinones-Salinas M A, et al. Micro-scale abrasive wear testing of CrN duplex PVD coating on pre-nitrided tool steel [J]. Mater. Res-Ibero-am. J. Mater., 2017, 20(4): 1092
|
28 |
Kozisek Z. Crystallization in small droplets: competition between homogeneous and heterogeneous nucleation [J]. J. Cryst. Growth., 2019, 522: 53
doi: 10.1016/j.jcrysgro.2019.06.007
|
29 |
Seehra M S, Narang V, Geddam U K, et al. Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification [J]. Carbon, 2017, 111: 380
doi: 10.1016/j.carbon.2016.10.010
pmid: 28690336
|
30 |
Chen A L, Li Z F, Chen Y. Influence of silica-core structure on polishing characteristics of core/shell structured composite particles of SiO2/CeO2 [J]. Chinese Journal of Materials Research, 2017, 31(6): 429
|
30 |
陈爱莲, 李泽锋, 陈 杨. 氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响 [J]. 材料研究学报, 2017, 31(6): 429
doi: 10.11901/1005.3093.2016.625
|
31 |
Wang D J, Zhang M Q, Ji Z S, et al. Process and properties of graphene reinforced Mg-based composite prepared by in-situ method [J]. Chinese Journal of Materials Research, 2021, 35(6): 474
|
31 |
王殿君, 张明秋, 吉泽升, 张吉生 等. 原位自生法制备石墨烯增强镁基复合材料的工艺和性能[J]. 材料研究学报, 2021, 35(6): 474
|
32 |
Nanda S S, Kim M J, Yeom K S, et al. Raman spectrum of graphene with its versatile future perspectives [J]. Trac-Trends. Anal. Chem., 2016, 80: 125
doi: 10.1016/j.trac.2016.02.024
|
33 |
Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement [J]. J. of Mater. Chem., 2009, 19(26): 4632
doi: 10.1039/b901421g
|
34 |
Wan Y J, Gong L X, Tang L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide [J]. Compos. Pt. A.-Appl. Sci. Mannf., 2014, 64: 79
|
35 |
Gulzar M, Masjuki H H, Kalam M A, et al. Tribological performance of nanoparticles as lubricating oil additives [J]. Journal of Nanoparticle Research, 2016, 18(8): 223
doi: 10.1007/s11051-016-3537-4
|
36 |
Guo J D, Peng R L, Du H, et al. The Application of nano-MoS2 quantum dots as liquid lubricant additive for tribological behavior improvement [J]. Nanomaterials, 2020, 10(2): 12
doi: 10.3390/nano10010012
|
37 |
Di Puccio F, Mattei L. Biotribology of artificial hip joints [J]. World Journal of Orthopedics, 2015, 6: 77
doi: 10.5312/wjo.v6.i1.77
pmid: 25621213
|
38 |
Wang W, Zhang G L, Xie G X. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives [J]. Appl. Surf. Sci., 2019, 498: 10
|
39 |
Qin Y L, Yang Y, Zhao P Y, et al. Microstructures and photocatalytic properties of Biocl-rgo nanocomposites prepared by two-step hydrothermal method [J]. Chinese Journal of Materials Research, 2020, 34(2): 92
doi: 10.11901/1005.3093.2019.443
|
39 |
秦艳利, 杨 艳, 赵鹏羽 等, 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(02):92
|
40 |
Hou J, Yang P Z, Zheng Q H, et al. Preparation and performance of graphite/TiO2 composite photocatalyst [J]. Chinese Journal of Materials Research, 2021, 35(9): 703
|
40 |
侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能 [J]. 材料研究学报, 2021, 35(9): 703
|
41 |
Qi H M, Hu C, Li J, et al. Tribological performance of PTFE and its composite in wide temperature range [J]. Tribology, 2022, 42(1): 65
|
41 |
齐慧敏, 胡 超, 李 洁 等. 宽温域环境中聚四氟乙烯及其复合材料摩擦学性能研究 [J]. 摩擦学学报, 2022, 42(1): 65
|
42 |
Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results [J]. Journal of Lubrication Technology, 1977, 99(2): 264
doi: 10.1115/1.3453074
|
43 |
Mosey N J, Woo T K J T J O P C A. A quantum chemical study of the unimolecular decomposition mechanisms of zinc dialkyldithiophosphate antiwear additives [J]. Journal of Physical Chemistry A, 2004, 108(28): 6001
doi: 10.1021/jp049371i
|
44 |
Oztas T, Sen H S, Durgun E, et al. Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment [J]. Journal of Physical Chemistry C, 2014, 118(51): 30120
doi: 10.1021/jp505858h
|
45 |
Tang H, Cao K, Wu Q, et al. Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles [J]. Crystal Research and Technology, 2011, 46(2): 195
doi: 10.1002/crat.v46.2
|
46 |
Li J F, Shi Q, Zhu H, et al. Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets [J]. Ind. Lubr. Tribol., 2018, 70(3): 560
doi: 10.1108/ILT-10-2016-0259
|
47 |
Wang Y N, Wan Z P, Lu L S, et al. Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles [J]. Tribology International, 2018, 124: 10
doi: 10.1016/j.triboint.2018.03.035
|
48 |
Nguyen D, Xie X D, Wen G, et al. Research on tribological behavior of TiN nanoparticles as lubricating additive [J]. Lubrication Engineering, 2015, 40(9): 42
|
48 |
阮亭纲, 谢先东, 文 广 等. 纳米TiN润滑油添加剂的摩擦学性能研究 [J]. 润滑与密封, 2015, 40(9): 42
|
49 |
Li C J, Tang W W, Tang X Z, et al. A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems [J]. Tribology International, 2022, 167: 12
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|