Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (6): 472-480    DOI: 10.11901/1005.3093.2022.107
  研究论文 本期目录 | 过刊浏览 |
C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为
邵萌萌, 陈招科(), 熊翔, 曾毅, 王铎, 王徐辉
中南大学粉末冶金研究院 轻质高强结构材料国家级重点实验室 长沙 410083
Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites
SHAO Mengmeng, CHEN Zhaoke(), XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui
Key Laboratory of Lightweight, High Strength Structural Materials, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
Mengmeng SHAO, Zhaoke CHEN, Xiang XIONG, Yi ZENG, Duo WANG, Xuhui WANG. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. Chinese Journal of Materials Research, 2023, 37(6): 472-480.

全文: PDF(9613 KB)   HTML
摘要: 

用强度为2 MeV的Si2+离子对C/C-ZrC-SiC复合材料进行室温辐照,使用掠入射X射线衍射、拉曼光谱、透射电子显微分析、扫描电子显微分析和纳米压痕等手段研究了辐照前后C/C-ZrC-SiC复合材料的晶体结构、晶格损伤、微观组织结构、表面形貌及显微力学性能的变化。结果表明:Si2+离子辐照后SiC晶格中产生的应力使晶格膨胀,而ZrC晶格未发生膨胀;辐照后SiC的拉曼峰宽化和偏移在Si-C区域形成新峰,离子辐照诱导ZrC出现的碳空位使其具有拉曼活性,从而出现特征峰;辐照后C/C-ZrC-SiC复合材料的表面形貌没有显著的变化,而ZrC和SiC中碳的原子含量分别提高了37.93%和13.03%;辐照使ZrC中出现大量的间隙缺陷团簇和SiC部分非晶化,且在ZrC与SiC晶粒的交界处出现完全非晶化区域;碳纤维中碳相的ID/IG值与石墨微晶的层面间距增大,热解碳的层状结构被破坏逐渐呈无序化;ZrC、SiC和碳纤维的纳米硬度和弹性模量增大,ZrC的变化最小表明其具有更高的稳定性。

关键词 复合材料C/C-ZrC-SiC离子辐照晶格缺陷非晶化微观力学性能    
Abstract

C/C-ZrC-SiC composites have high specific strength, high specific modulus and good resistance to high-temperature ablation. At the same time, ZrC, SiC and carbon matrix materials have low neutron absorption cross-sections, which are candidate materials for future nuclear energy systems. In order to assess the application possibility of C/C-ZrC-SiC composites in the field of nuclear energy, C/C-ZrC-SiC composites was irradiated with ion beam of 2 MeV Si2+ at room temperature. Then the effect of Si2+ ion beam irradiation on the performance of C/C-ZrC-SiC composites was examined by means of grazing incidence X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and nanoindentation test, in terms of their crystallographic structure, lattice damage, microstructure, surface morphology and micromechanical properties etc. The results show that the irradiation of Si2+ion beam can induce stress within the SiC lattice, which then leads to an increase in the interplanar spacing of SiC, while the ZrC lattice does not expand; After irradiation, Raman peaks of SiC are broadened and shifted, correspondingly new peaks emerged in the Si-C region; The ion irradiation can induce carbon vacancies within ZrC, resulting in the formation of characteristic peaks; The surface morphology of ZrC, SiC and carbon fiber don't change significantly after irradiation, but the atomic ratio of carbon atom in ZrC and SiC increase by 13.03% and 23.21%, respectively; A large number of interstitial defect clusters appeared in ZrC, while SiC was partially amorphized, and a completely amorphized region appeared at the junction of ZrC and SiC grains; The ID/IG value and the interplanar spacing of graphite crystallites increase, and the layered structure of pyrolytic carbon is destroyed and gradually disordered; the nano-hardness and elastic modulus of ZrC, SiC and carbon fibers increase, with the best stability with the smallest degree of increase in nano-hardness and elastic modulus.

Key wordscomposites    C/C-ZrC-SiC    ion irradiation    lattice imperfection    amorphization    micro mechanical property
收稿日期: 2022-02-22     
ZTFLH:  TB332  
基金资助:总装重点实验室基金(6142907200301);军委装备发展部装备项目中心项目(6142912180202)
通讯作者: 陈招科,研究员,chenzhaoke2008@csu.edu.cn,研究方向为复合材料
Corresponding author: CHEN Zhaoke, Tel: 15387318568, E-mail:chenzhaoke2008@csu.edu.cn
作者简介: 邵萌萌,女,1997年生,硕士
Calculation typeKinchin-Pease
Ion speciesSilicon
Ion energy2 MeV
Target density6.73, 3.17 and 2.26 g/cm3 for ZrC, SiC and C respectively
Target compositionZrC, SiC, C
Displacement energy (Ed)C 25 eV; Zr 35 eV for ZrC; C 20 eV; Si 35 eV for SiC[30]; C 25eV for carbon fiber
表1  SRIM模拟计算的输入参数
图1  2 MeV的Si2+离子在ZrC、SiC与C中沿深度方向的损伤和离子分布
图2  C/C-ZrC-SiC复合材料辐照前后的GIXRD谱对比
图3  辐照前后C/C-ZrC-SiC复合材料中陶瓷基体和碳纤维的Raman谱
图4  辐照前后碳纤维、PyC界面和陶瓷基体的SEM照片
Atom fraction% (ZrC)Atom fraction% (SiC)
ZrSiCSiC
Before irradiation44.612.2753.1270.5029.50
After irradiation34.135.8360.0459.3140.69
表2  ZrC和SiC相辐照前后的原子比
图5  辐照后ZrC的BF像、HRTEM像和IFET像、辐照后SiC的HRTEM像、IFET像、辐照后碳纤维、热解碳的HRTEM像和FET像
图6  辐照前后ZrC、SiC和碳纤维的纳米压痕载荷-位移曲线
Nanohardness / GPaElastic modulus / GPa
Before irradiationAfter irradiationBefore irradiationAfter irradiation
ZrC16.78227.864141.220205.405
SiC14.54532.03693.462250.105
Fiber2.8445.52415.53634.878
表 3  辐照前后ZrC,SiC和碳纤维的纳米硬度和弹性模量
1 Chang Y, Sun W, Xiong X, et al. Microstructure and ablation behaviors of a novel gradient C/C-ZrC-SiC composite fabricated by an improved reactive melt infiltration [J]. Ceramics International, 2016, 42(15): 16906
doi: 10.1016/j.ceramint.2016.07.190
2 Shi A, Yang X, Fang C, et al. Effect of CNTs addition on microstructure, ablation property and mechanism of ZrC-SiC coating for C/C-ZrC-SiC composites [J]. Vacuum, 2020, 172:
3 Huo C, Zhou L, Guo L, et al. Effect of the Al2O3 additive on the high temperature ablation behavior of the ZrC-ZrO2 coating for SiC-coated carbon/carbon composites [J]. Ceramics International, 2019, 45(17): 23180
doi: 10.1016/j.ceramint.2019.08.014
4 Tang P, Hu C, Pang S, et al. Interfacial modification and cyclic ablation behaviors of a SiC/ZrB2-SiC/SiC triple-layer coating for C/SiC composites at above 2000℃ [J]. Corrosion Science, 2020, 169:
5 Yang X, Su Z, Huang Q, et al. Microstructure and mechanical properties of C/C-ZrC-SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders [J]. Journal of Materials Science & Technology, 2013, 29 (8): 702
6 Zhao Z, Li K, Li W, et al. Ablation behavior of C/C-ZrC-SiC composites prepared by reactive melt infiltration under oxyacetylene torch at two heat fluxes [J]. Ceramics International, 2018, 44 (14): 17345
doi: 10.1016/j.ceramint.2018.06.199
7 Chen S A, Zhang C, Zhang Y, et al. Mechanism of ablation of 3D C/ZrC-SiC composite under an oxyacetylene flame [J]. Corrosion Science, 2013, 68: 168
doi: 10.1016/j.corsci.2012.11.009
8 LI J, Huang H, Lei G, et al. Evolution of amorphization and nanohardness in SiC under Xe ion irradiation [J]. Journal of Nuclear Materials, 2014, 454 (1-3): 173
doi: 10.1016/j.jnucmat.2014.07.036
9 Han Z, Wang X, Wang J, et al. Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500℃ annealing [J]. Chinese Physics B, 2021, 30 (8): 086107
10 Idris M I, Konishi H, Imai M, et al. Neutron irradiation swelling of SiC and SiCf/SiC for advanced nuclear applications [J]. Energy Procedia, 2015, 71: 328
doi: 10.1016/j.egypro.2014.11.886
11 Leide A J, Todd R I, Armstrong D E J. Measurement of swelling-induced residual stress in ion implanted SiC, and its effect on micromechanical properties [J]. Acta Materialia, 2020, 196: 78
doi: 10.1016/j.actamat.2020.06.030
12 Zhang L, Jiang W, Pan C, et al. Raman study of amorphization in nanocrystalline 3C-SiC irradiated with C+ and He+ ions [J]. Journal of Raman Spectroscopy, 2019, 50(8): 1197
doi: 10.1002/jrs.v50.8
13 Lin Y R, Ho C Y, Chuang W T, et al. Swelling of ion-irradiated 3C-SiC characterized by synchrotron radiation based XRD and TEM [J]. Journal of Nuclear Materials, 2014, 455(1-3): 292
doi: 10.1016/j.jnucmat.2014.06.061
14 Pellegrino S, Trocellier P, Thomé L, et al. Raman investigation of ion irradiated TiC and ZrC [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 454: 61.
doi: 10.1016/j.nimb.2019.02.012
15 Florez R, Crespillo M L, He X, et al. The irradiation response of ZrC ceramics under 10 MeV Au3+ ion irradiation at 800℃ [J]. Journal of the European Ceramic Society, 2020, 40(5): 1791
doi: 10.1016/j.jeurceramsoc.2020.01.025
16 Wei B, Wang Y, Zhang H, et al. Microstructure evolution of nonstoichiometric ZrC0.6 with ordered carbon vacancies under ion irradiation [J]. Materials Letters, 2018, 228: 254
doi: 10.1016/j.matlet.2018.06.010
17 Feng S, Yang Y, Xia H, et al. Irradiation effects of fiber and matrix induced by He+ ion for high-performance C/C composites [J]. ACS Applied Nano Materials, 2019, 2(5): 2926
doi: 10.1021/acsanm.9b00362
18 Oku T, Kurumada A, Imamura Y, et al. Effects of ion irradiation on the hardness properties of graphites and C/C composites by indentation tests [J]. Journal of Nuclear Materials, 2008, 381(1-2): 92
doi: 10.1016/j.jnucmat.2008.07.026
19 Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption [J]. Journal of Nuclear Materials, 2013, 435(1-3): 77
doi: 10.1016/j.jnucmat.2012.12.025
20 Shi B, Liu X C, Zhu M X, et al. Effect of propane/silane ratio on the growth of 3C-SiC thin films on Si(100) substrates by APCVD [J]. Applied Surface Science, 2012, 259: 685
doi: 10.1016/j.apsusc.2012.07.097
21 Bao W, Liu J X, Wang X, et al. Structural evolution in ZrC-SiC composite irradiated by 4 MeV Au ions [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 434: 23
doi: 10.1016/j.nimb.2018.08.006
22 Florez R, Crespillo M L, He X, et al. Early stage oxidation of ZrC under 10 MeV Au3+ ion-irradiation at 800℃ [J]. Corrosion Science, 2020, 169:
23 Zhang L, Zhang C, Huang Q, et al. Microstructure damage in silicon carbide fiber induced by 246.8 MeV Ar-ion irradiation [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 435: 169
doi: 10.1016/j.nimb.2018.06.002
24 Wei B, Wang D, Wang Y, et al. Microstructure evolution in ZrCx with different stoichiometries irradiated by four MeV Au ions [J]. Materials (Basel), 2019, 12 (22): 3768
doi: 10.3390/ma12223768
25 Jiang L, Xiu P, Yan Y, et al. Effects of ion irradiation on chromium coatings of various thicknesses on a zirconium alloy [J]. Journal of Nuclear Materials, 2019, 526: 151740
doi: 10.1016/j.jnucmat.2019.151740
26 Jiang C, Zheng M J, Morgan D, et al. Amorphization driven by defect-induced mechanical instability [J]. Phys Rev Lett, 2013, 111 (15): 155501
doi: 10.1103/PhysRevLett.111.155501
27 Jiang W, Jiao L, Wang H, et al. Transition from irradiation-induced amorphization to crystallization in nanocrystalline silicon carbide [J]. Journal of the American Ceramic Society, 2011, 94 (12): 4127
doi: 10.1111/j.1551-2916.2011.04887.x
28 Wang F, Yan X, Wang T, et al. Irradiation damage in (Zr0.25Ta0.25-Nb0.25Ti0.25)C high-entropy carbide ceramics [J]. Acta Materialia, 2020, 195: 739
doi: 10.1016/j.actamat.2020.06.011
29 Burchell T D. Radiation effects in graphite and carbon-based materials [J]. MRS Bulletin, 1997: 29
30 Weber W J, Gao F, Devanathan R, et al. The efficiency of damage production in silicon carbide [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 218: 68
doi: 10.1016/j.nimb.2003.12.006
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.