|
|
C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为 |
邵萌萌, 陈招科( ), 熊翔, 曾毅, 王铎, 王徐辉 |
中南大学粉末冶金研究院 轻质高强结构材料国家级重点实验室 长沙 410083 |
|
Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites |
SHAO Mengmeng, CHEN Zhaoke( ), XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui |
Key Laboratory of Lightweight, High Strength Structural Materials, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
引用本文:
邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
Mengmeng SHAO,
Zhaoke CHEN,
Xiang XIONG,
Yi ZENG,
Duo WANG,
Xuhui WANG.
Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. Chinese Journal of Materials Research, 2023, 37(6): 472-480.
1 |
Chang Y, Sun W, Xiong X, et al. Microstructure and ablation behaviors of a novel gradient C/C-ZrC-SiC composite fabricated by an improved reactive melt infiltration [J]. Ceramics International, 2016, 42(15): 16906
doi: 10.1016/j.ceramint.2016.07.190
|
2 |
Shi A, Yang X, Fang C, et al. Effect of CNTs addition on microstructure, ablation property and mechanism of ZrC-SiC coating for C/C-ZrC-SiC composites [J]. Vacuum, 2020, 172:
|
3 |
Huo C, Zhou L, Guo L, et al. Effect of the Al2O3 additive on the high temperature ablation behavior of the ZrC-ZrO2 coating for SiC-coated carbon/carbon composites [J]. Ceramics International, 2019, 45(17): 23180
doi: 10.1016/j.ceramint.2019.08.014
|
4 |
Tang P, Hu C, Pang S, et al. Interfacial modification and cyclic ablation behaviors of a SiC/ZrB2-SiC/SiC triple-layer coating for C/SiC composites at above 2000℃ [J]. Corrosion Science, 2020, 169:
|
5 |
Yang X, Su Z, Huang Q, et al. Microstructure and mechanical properties of C/C-ZrC-SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders [J]. Journal of Materials Science & Technology, 2013, 29 (8): 702
|
6 |
Zhao Z, Li K, Li W, et al. Ablation behavior of C/C-ZrC-SiC composites prepared by reactive melt infiltration under oxyacetylene torch at two heat fluxes [J]. Ceramics International, 2018, 44 (14): 17345
doi: 10.1016/j.ceramint.2018.06.199
|
7 |
Chen S A, Zhang C, Zhang Y, et al. Mechanism of ablation of 3D C/ZrC-SiC composite under an oxyacetylene flame [J]. Corrosion Science, 2013, 68: 168
doi: 10.1016/j.corsci.2012.11.009
|
8 |
LI J, Huang H, Lei G, et al. Evolution of amorphization and nanohardness in SiC under Xe ion irradiation [J]. Journal of Nuclear Materials, 2014, 454 (1-3): 173
doi: 10.1016/j.jnucmat.2014.07.036
|
9 |
Han Z, Wang X, Wang J, et al. Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500℃ annealing [J]. Chinese Physics B, 2021, 30 (8): 086107
|
10 |
Idris M I, Konishi H, Imai M, et al. Neutron irradiation swelling of SiC and SiCf/SiC for advanced nuclear applications [J]. Energy Procedia, 2015, 71: 328
doi: 10.1016/j.egypro.2014.11.886
|
11 |
Leide A J, Todd R I, Armstrong D E J. Measurement of swelling-induced residual stress in ion implanted SiC, and its effect on micromechanical properties [J]. Acta Materialia, 2020, 196: 78
doi: 10.1016/j.actamat.2020.06.030
|
12 |
Zhang L, Jiang W, Pan C, et al. Raman study of amorphization in nanocrystalline 3C-SiC irradiated with C+ and He+ ions [J]. Journal of Raman Spectroscopy, 2019, 50(8): 1197
doi: 10.1002/jrs.v50.8
|
13 |
Lin Y R, Ho C Y, Chuang W T, et al. Swelling of ion-irradiated 3C-SiC characterized by synchrotron radiation based XRD and TEM [J]. Journal of Nuclear Materials, 2014, 455(1-3): 292
doi: 10.1016/j.jnucmat.2014.06.061
|
14 |
Pellegrino S, Trocellier P, Thomé L, et al. Raman investigation of ion irradiated TiC and ZrC [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 454: 61.
doi: 10.1016/j.nimb.2019.02.012
|
15 |
Florez R, Crespillo M L, He X, et al. The irradiation response of ZrC ceramics under 10 MeV Au3+ ion irradiation at 800℃ [J]. Journal of the European Ceramic Society, 2020, 40(5): 1791
doi: 10.1016/j.jeurceramsoc.2020.01.025
|
16 |
Wei B, Wang Y, Zhang H, et al. Microstructure evolution of nonstoichiometric ZrC0.6 with ordered carbon vacancies under ion irradiation [J]. Materials Letters, 2018, 228: 254
doi: 10.1016/j.matlet.2018.06.010
|
17 |
Feng S, Yang Y, Xia H, et al. Irradiation effects of fiber and matrix induced by He+ ion for high-performance C/C composites [J]. ACS Applied Nano Materials, 2019, 2(5): 2926
doi: 10.1021/acsanm.9b00362
|
18 |
Oku T, Kurumada A, Imamura Y, et al. Effects of ion irradiation on the hardness properties of graphites and C/C composites by indentation tests [J]. Journal of Nuclear Materials, 2008, 381(1-2): 92
doi: 10.1016/j.jnucmat.2008.07.026
|
19 |
Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption [J]. Journal of Nuclear Materials, 2013, 435(1-3): 77
doi: 10.1016/j.jnucmat.2012.12.025
|
20 |
Shi B, Liu X C, Zhu M X, et al. Effect of propane/silane ratio on the growth of 3C-SiC thin films on Si(100) substrates by APCVD [J]. Applied Surface Science, 2012, 259: 685
doi: 10.1016/j.apsusc.2012.07.097
|
21 |
Bao W, Liu J X, Wang X, et al. Structural evolution in ZrC-SiC composite irradiated by 4 MeV Au ions [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 434: 23
doi: 10.1016/j.nimb.2018.08.006
|
22 |
Florez R, Crespillo M L, He X, et al. Early stage oxidation of ZrC under 10 MeV Au3+ ion-irradiation at 800℃ [J]. Corrosion Science, 2020, 169:
|
23 |
Zhang L, Zhang C, Huang Q, et al. Microstructure damage in silicon carbide fiber induced by 246.8 MeV Ar-ion irradiation [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 435: 169
doi: 10.1016/j.nimb.2018.06.002
|
24 |
Wei B, Wang D, Wang Y, et al. Microstructure evolution in ZrCx with different stoichiometries irradiated by four MeV Au ions [J]. Materials (Basel), 2019, 12 (22): 3768
doi: 10.3390/ma12223768
|
25 |
Jiang L, Xiu P, Yan Y, et al. Effects of ion irradiation on chromium coatings of various thicknesses on a zirconium alloy [J]. Journal of Nuclear Materials, 2019, 526: 151740
doi: 10.1016/j.jnucmat.2019.151740
|
26 |
Jiang C, Zheng M J, Morgan D, et al. Amorphization driven by defect-induced mechanical instability [J]. Phys Rev Lett, 2013, 111 (15): 155501
doi: 10.1103/PhysRevLett.111.155501
|
27 |
Jiang W, Jiao L, Wang H, et al. Transition from irradiation-induced amorphization to crystallization in nanocrystalline silicon carbide [J]. Journal of the American Ceramic Society, 2011, 94 (12): 4127
doi: 10.1111/j.1551-2916.2011.04887.x
|
28 |
Wang F, Yan X, Wang T, et al. Irradiation damage in (Zr0.25Ta0.25-Nb0.25Ti0.25)C high-entropy carbide ceramics [J]. Acta Materialia, 2020, 195: 739
doi: 10.1016/j.actamat.2020.06.011
|
29 |
Burchell T D. Radiation effects in graphite and carbon-based materials [J]. MRS Bulletin, 1997: 29
|
30 |
Weber W J, Gao F, Devanathan R, et al. The efficiency of damage production in silicon carbide [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 218: 68
doi: 10.1016/j.nimb.2003.12.006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|